3,598 research outputs found

    Atmospheric Impairments and Mitigation Techniques for High-Frequency Earth-Space Communication System in Heavy Rain Region: A Brief Review

    Get PDF
    This work surveys the atmospheric impairments that affect a satellite link operating in a high-frequency band, such as Ka and Q/V bands, particularly in heavy rain regions. The impacts of hydrometeors and cloud attenuation are emphasised and discussed along with the contribution of gases and scintillation to signal fade. Also, propagation impairment mitigation techniques are reviewed from the perspective of satellite operators in heavy rain areas

    Chiral symmetry restoration and properties of Goldstone bosons at finite temperature

    Full text link
    We study chiral symmetry restoration by analyzing thermal properties of QCD's (pseudo-)Goldstone bosons, especially the pion. The meson properties are obtained from the spectral densities of mesonic imaginary-time correlation functions. To obtain the correlation functions, we solve the Dyson-Schwinger equations and the inhomogeneous Bethe-Salpeter equations in the leading symmetry-preserving rainbow-ladder approximation. In the chiral limit, the pion and its partner sigma degenerate at the critical temperature TcT_c. At T≳TcT \gtrsim T_c, it is found that the pion rapidly dissociates, which signals deconfinement phase transition. Beyond the chiral limit, the pion dissociation temperature can be used to define the pseudo-critical temperature of chiral phase crossover, which is consistent with that obtained by the maximum point of the chiral susceptibility. The parallel analysis for kaon and pseudoscalar ssˉs\bar{s} suggests that heavy mesons may survive above TcT_c

    Compositional Generalization and Decomposition in Neural Program Synthesis

    Full text link
    When writing programs, people have the ability to tackle a new complex task by decomposing it into smaller and more familiar subtasks. While it is difficult to measure whether neural program synthesis methods have similar capabilities, what we can measure is whether they compositionally generalize, that is, whether a model that has been trained on the simpler subtasks is subsequently able to solve more complex tasks. In this paper, we focus on measuring the ability of learned program synthesizers to compositionally generalize. We first characterize several different axes along which program synthesis methods would be desired to generalize, e.g., length generalization, or the ability to combine known subroutines in new ways that do not occur in the training data. Based on this characterization, we introduce a benchmark suite of tasks to assess these abilities based on two popular existing datasets, SCAN and RobustFill. Finally, we make first attempts to improve the compositional generalization ability of Transformer models along these axes through novel attention mechanisms that draw inspiration from a human-like decomposition strategy. Empirically, we find our modified Transformer models generally perform better than natural baselines, but the tasks remain challenging.Comment: Published at the Deep Learning for Code (DL4C) Workshop at ICLR 202
    • …
    corecore