52,304 research outputs found
Combined Effect of QCD Resummation and QED Radiative Correction to W boson Observables at the Tevatron
A precise determination of the W boson mass at the Fermilab Tevatron requires
a theoretical calculation in which the effects of the initial-state multiple
soft-gluon emission and the final-state photonic correction are simultaneously
included . Here, we present such a calculation and discuss its prediction on
the transverse mass distribution of the W boson and the transverse momentum
distribution of its decay charged lepton, which are the most relevant
observables for measuring the W boson mass at hadron colliders.Comment: 10 pages, 3 Postscript figures, uses revtex4.st
Provable Deterministic Leverage Score Sampling
We explain theoretically a curious empirical phenomenon: "Approximating a
matrix by deterministically selecting a subset of its columns with the
corresponding largest leverage scores results in a good low-rank matrix
surrogate". To obtain provable guarantees, previous work requires randomized
sampling of the columns with probabilities proportional to their leverage
scores.
In this work, we provide a novel theoretical analysis of deterministic
leverage score sampling. We show that such deterministic sampling can be
provably as accurate as its randomized counterparts, if the leverage scores
follow a moderately steep power-law decay. We support this power-law assumption
by providing empirical evidence that such decay laws are abundant in real-world
data sets. We then demonstrate empirically the performance of deterministic
leverage score sampling, which many times matches or outperforms the
state-of-the-art techniques.Comment: 20th ACM SIGKDD Conference on Knowledge Discovery and Data Minin
Longitudinal/Goldstone boson equivalence and phenomenology of probing the electroweak symmetry breaking
We formulate the equivalence between the longitudinal weak-boson and the
Goldstone boson as a criterion for sensitively probing the electroweak symmetry
breaking mechanism and develop a precise power counting rule for chiral
Lagrangian formulated electroweak theories. With these we semi-quatitatively
analyze the sensitivities to various effective operators related to
electrowaeak symmetry breaking via weak-boson scatterings at the CERN Large
Hadron Collider (LHC).Comment: 6 pages, LaTex, 1 postscript figure included using psfig.te
Sensitivity of the LHC to Electroweak Symmetry Breaking: Equivalence Theorem as a Criterion
Based upon our recent study on the intrinsic connection between the
longitudinal weak-boson scatterings and probing the electroweak symmetry
breaking (EWSB) mechanism, we reveal the profound physical content of the
Equivalence Theorem (ET) as being able to discriminate physical processes which
are sensitive/insensitive to probing the EWSB sector. With this physical
content of the ET as a criterion, we analyze the complete set of the bosonic
operators in the electroweak chiral Lagrangian and systematically classify the
sensitivities to probing all these operators at the CERN LHC via the weak-boson
fusion in channel. This is achieved by developing a precise power
counting rule (a generalization from Weinberg's counting method) to {\it
separately} count the power dependences on the energy and all relevant mass
scales.Comment: 33 pages, LaTeX, 10 figures and Table-1b are in the separate file
figtab.uu. (The only change made from the previous version is to fix the bugs
in the uuencoded file.
Straight-line Drawability of a Planar Graph Plus an Edge
We investigate straight-line drawings of topological graphs that consist of a
planar graph plus one edge, also called almost-planar graphs. We present a
characterization of such graphs that admit a straight-line drawing. The
characterization enables a linear-time testing algorithm to determine whether
an almost-planar graph admits a straight-line drawing, and a linear-time
drawing algorithm that constructs such a drawing, if it exists. We also show
that some almost-planar graphs require exponential area for a straight-line
drawing
A Novel Long-term, Multi-Channel and Non-invasive Electrophysiology Platform for Zebrafish.
Zebrafish are a popular vertebrate model for human neurological disorders and drug discovery. Although fecundity, breeding convenience, genetic homology and optical transparency have been key advantages, laborious and invasive procedures are required for electrophysiological studies. Using an electrode-integrated microfluidic system, here we demonstrate a novel multichannel electrophysiology unit to record multiple zebrafish. This platform allows spontaneous alignment of zebrafish and maintains, over days, close contact between head and multiple surface electrodes, enabling non-invasive long-term electroencephalographic recording. First, we demonstrate that electrographic seizure events, induced by pentylenetetrazole, can be reliably distinguished from eye or tail movement artifacts, and quantifiably identified with our unique algorithm. Second, we show long-term monitoring during epileptogenic progression in a scn1lab mutant recapitulating human Dravet syndrome. Third, we provide an example of cross-over pharmacology antiepileptic drug testing. Such promising features of this integrated microfluidic platform will greatly facilitate high-throughput drug screening and electrophysiological characterization of epileptic zebrafish
Discovery and Identification of W' and Z' in SU(2) x SU(2) x U(1) Models at the LHC
We explore the discovery potential of W' and Z' boson searches for various
SU(2) x SU(2) x U(1) models at the Large Hadron Collider (LHC), after taking
into account the constraints from low energy precision measurements and direct
searches at both the Tevatron (1.96 TeV) and the LHC (7 TeV). In such models,
the W' and Z' bosons emerge after the electroweak symmetry is spontaneously
broken. Two patterns of the symmetry breaking are considered in this work: one
is SU(2)_L x SU(2)_2 x U(1)_X to SU(2)_L x U(1)_Y (BP-I), another is SU(2)_1 x
SU(2)_2 x U(1)_Y to SU(2)_L x U(1)_Y (BP-II). Examining the single production
channel of W' and Z' with their subsequent leptonic decays, we find that the
probability of detecting W' and Z' bosons in the considered models at the LHC
(with 14 TeV) is highly limited by the low energy precision data constraints.
We show that observing Z' alone, without seeing a W', does not rule out new
physics models with non-Abelian gauge extension, such as the phobic models in
BP-I. Models in BP-II would predict the discovery of degenerate W' and Z'
bosons at the LHC.Comment: 29 pages, including 11 figures, 3 tables, added references for
introductio
- …