47,237 research outputs found

    Two-phase coexistence in Fe–Ni alloys synthesized by ball milling

    Get PDF
    We used mechanical alloying with a Spex 8000 mixer/mill to synthesize a series of Fe100–xNix alloys from x=0 to x=49. The Spex mill was modified so that it could also operate at a reduced milling intensity, and we compared the alloys synthesized after long times with the normal and reduced milling intensities. X-ray diffractometry and Mössbauer spectrometry were used to measure the volume fractions of the bcc and fcc phases in the alloys, and to determine the chemical compositions of the individual phases. We found that the composition ranges of the bcc and fcc single phase regions were extended well beyond their equilibrium ranges. At the higher milling intensity, we found that the bcc phase was destabilized with respect to the fcc phase, and the two-phase region shifted to lower Ni concentrations. For those alloys with coexisting bcc and fcc phases, we present evidence that the chemical compositions of the two phases are nearly the same. We explain the destabilization of the bcc with milling intensity as originating with a higher defect density in the bcc alloys than in the fcc alloys. We argue that this defect density is not homogeneous throughout the alloy, however, and the distribution of defect enthalpies can explain the two-phase coexistence in the as-milled alloys

    Phases and phase stabilities of Fe3X alloys (X=Al, As, Ge, In, Sb, Si, Sn, Zn) prepared by mechanical alloying

    Get PDF
    Mechanical alloying with a Spex 8000 mixer/mill was used to prepare several alloys of the Fe3X composition, where the solutes X were from groups IIB, IIIB, IVB, and VB of the periodic table. Using x-ray diffractometry and Mössbauer spectrometry, we determined the steady-state phases after milling for long times. The tendencies of the alloys to form the bcc phase after milling are predicted well with the modified usage of a Darken–Gurry plot of electronegativity versus metallic radius. Thermal stabilities of some of these phases were studied. In the cases of Fe3Ge and Fe3Sn, there was the formation of transient D03 and B2 order during annealing, although this ordered structure was replaced by equilibrium phases upon further annealing

    Experimental investigation on thermal comfort model between local thermal sensation and overall thermal sensation

    Get PDF
    To study the human local and overall thermal sensations, a series of experiments under various conditions were carried out in a climate control chamber. The adopted analysis method considered the effect of the weight coefficient of local average skin temperature and density of the cold receptors’ distribution in different local body areas. The results demonstrated that the thermal sensation of head, chest, back and hands is warmer than overall thermal sensation. The mean thermal sensation votes of those local areas were more densely distributed. In addition, the thermal sensation of arms, tight and calf was colder than the overall thermal sensation, which pronounced that thermal sensation votes were more dispersed. The thermal sensation of chest and back had a strong linear correlation with overall thermal sensation. Considering the actual scope of air-conditioning regulation, the human body was classified into three local parts: a) head, b) upper part of body and c) lower part of body. The prediction model of both the three-part thermal sensation and overall thermal sensation was developed. Weight coefficients were 0.21, 0.60 and 0.19 respectively. The model provides scientist basis for guiding the sage installation place of the personal ventilation system to achieve efficient energy use

    Universal quantized spin-Hall conductance fluctuation in graphene

    Full text link
    We report a theoretical investigation of quantized spin-Hall conductance fluctuation of graphene devices in the diffusive regime. Two graphene models that exhibit quantized spin-Hall effect (QSHE) are analyzed. Model-I is with unitary symmetry under an external magnetic field B0B\ne 0 but with zero spin-orbit interaction, tSO=0t_{SO}=0. Model-II is with symplectic symmetry where B=0 but tSO0t_{SO} \ne 0. Extensive numerical calculations indicate that the two models have exactly the same universal QSHE conductance fluctuation value 0.285e/4π0.285 e/4\pi regardless of the symmetry. Qualitatively different from the conventional charge and spin universal conductance distributions, in the presence of edge states the spin-Hall conductance shows an one-sided log-normal distribution rather than a Gaussian distribution. Our results strongly suggest that the quantized spin-Hall conductance fluctuation belongs to a new universality class

    Phase diagrams of bcc alloys at low temperatures with ballistic atom movements

    Get PDF
    Kinetic Monte Carlo simulations were used to determine the steady states of equiatomic bcc alloys with first- and second-nearest-neighbor (1NN and 2NN) effective pair interactions. Atom movements occurred with a vacancy mechanism, and were of two types: thermal and ballistic. The phase diagram in the space spanned by the 1NN and 2NN interaction strengths was determined for thermal atom movements alone, and with some ballistic atom movements. With increasing temperature, the region of B32 phase receded against the adjacent regions of B2 order and unmixed states. With some ballistic atom movements, however, the region of B32 order encroached on the adjacent regions of B2 order and unmixed state. The shifts in phase boundaries are attributed to differences in how the internal energies of the different phases are affected by ballistic atom movements. Local fluctuations in the internal energy density in the presence of ballistic atom movements caused two-phase regions in the phase diagram

    The least common multiple of a sequence of products of linear polynomials

    Full text link
    Let f(x)f(x) be the product of several linear polynomials with integer coefficients. In this paper, we obtain the estimate: loglcm(f(1),...,f(n))An\log {\rm lcm}(f(1), ..., f(n))\sim An as nn\rightarrow\infty , where AA is a constant depending on ff.Comment: To appear in Acta Mathematica Hungaric

    Effects of ballistic atom movements on ordering transitions of binary alloys

    Get PDF
    We studied chemical order-disorder transitions in equiatomic alloys on a square lattice in the presence of both thermal and ballistic atom movements. Using Monte Carlo simulations with a vacancy mechanism, we determined the steady states of the alloys for various combinations of f (fraction of ballistic atom movements) and T (temperature), and located the order-disorder phase boundary on a diagram of T vs f. For symmetric interatomic potentials, the dynamical critical temperature decreased with f as (1-1.58f) when f≤0.36, and decreased rapidly with f when 0.360.43. An Onsager-type kinetic rate equation was modified to include ballistic atom movements, and was used to identify two reasons why the ballistic atom movements suppress the dynamical critical temperature: (1) the ballistic atom movements dilute the enthalpy driving force for ordering, and (2) at low temperatures the ratio of thermal mobility coefficient to ballistic mobility coefficient becomes small

    Elastic electron scattering by ethyl vinyl ether

    Get PDF
    We report measured and calculated results for elastic scattering of low-energy electrons by ethyl vinyl ether (ethoxyethene), a prototype system for studying indirect dissociative attachment processes that may play a role in DNA damage. The integral cross section displays the expected π* shape resonance. The agreement between the calculated and measured cross sections is generally good
    corecore