57 research outputs found
Haemocompatibility and ion exchange capability of nanocellulose polypyrrole membranes intended for blood purification
Composites of nanocellulose and the conductive polymer polypyrrole (PPy) are presented as candidates for a new generation of haemodialysis membranes. The composites may combine active ion exchange with passive ultrafiltration, and the large surface area (about 80 m2 g−1) could potentially provide compact dialysers. Herein, the haemocompatibility of the novel membranes and the feasibility of effectively removing small uraemic toxins by potential-controlled ion exchange were studied. The thrombogenic properties of the composites were improved by applying a stable heparin coating. In terms of platelet adhesion and thrombin generation, the composites were comparable with haemocompatible polymer polysulphone, and regarding complement activation, the composites were more biocompatible than commercially available membranes. It was possible to extract phosphate and oxalate ions from solutions with physiological pH and the same tonicity as that of the blood. The exchange capacity of the materials was found to be 600 ± 26 and 706 ± 31 μmol g−1 in a 0.1 M solution (pH 7.4) and in an isotonic solution of phosphate, respectively. The corresponding values with oxalate were 523 ± 5 in a 0.1 M solution (pH 7.4) and 610 ± 1 μmol g−1 in an isotonic solution. The heparinized PPy–cellulose composite is consequently a promising haemodialysis material, with respect to both potential-controlled extraction of small uraemic toxins and haemocompatibility
Global, regional, and national burden of disorders affecting the nervous system, 1990–2021: a systematic analysis for the Global Burden of Disease Study 2021
BACKGROUND: Disorders affecting the nervous system are diverse and include neurodevelopmental disorders, late-life neurodegeneration, and newly emergent conditions, such as cognitive impairment following COVID-19. Previous publications from the Global Burden of Disease, Injuries, and Risk Factor Study estimated the burden of 15 neurological conditions in 2015 and 2016, but these analyses did not include neurodevelopmental disorders, as defined by the International Classification of Diseases (ICD)-11, or a subset of cases of congenital, neonatal, and infectious conditions that cause neurological damage. Here, we estimate nervous system health loss caused by 37 unique conditions and their associated risk factors globally, regionally, and nationally from 1990 to 2021. METHODS: We estimated mortality, prevalence, years lived with disability (YLDs), years of life lost (YLLs), and disability-adjusted life-years (DALYs), with corresponding 95% uncertainty intervals (UIs), by age and sex in 204 countries and territories, from 1990 to 2021. We included morbidity and deaths due to neurological conditions, for which health loss is directly due to damage to the CNS or peripheral nervous system. We also isolated neurological health loss from conditions for which nervous system morbidity is a consequence, but not the primary feature, including a subset of congenital conditions (ie, chromosomal anomalies and congenital birth defects), neonatal conditions (ie, jaundice, preterm birth, and sepsis), infectious diseases (ie, COVID-19, cystic echinococcosis, malaria, syphilis, and Zika virus disease), and diabetic neuropathy. By conducting a sequela-level analysis of the health outcomes for these conditions, only cases where nervous system damage occurred were included, and YLDs were recalculated to isolate the non-fatal burden directly attributable to nervous system health loss. A comorbidity correction was used to calculate total prevalence of all conditions that affect the nervous system combined. FINDINGS: Globally, the 37 conditions affecting the nervous system were collectively ranked as the leading group cause of DALYs in 2021 (443 million, 95% UI 378–521), affecting 3·40 billion (3·20–3·62) individuals (43·1%, 40·5–45·9 of the global population); global DALY counts attributed to these conditions increased by 18·2% (8·7–26·7) between 1990 and 2021. Age-standardised rates of deaths per 100 000 people attributed to these conditions decreased from 1990 to 2021 by 33·6% (27·6–38·8), and age-standardised rates of DALYs attributed to these conditions decreased by 27·0% (21·5–32·4). Age-standardised prevalence was almost stable, with a change of 1·5% (0·7–2·4). The ten conditions with the highest age-standardised DALYs in 2021 were stroke, neonatal encephalopathy, migraine, Alzheimer's disease and other dementias, diabetic neuropathy, meningitis, epilepsy, neurological complications due to preterm birth, autism spectrum disorder, and nervous system cancer. INTERPRETATION: As the leading cause of overall disease burden in the world, with increasing global DALY counts, effective prevention, treatment, and rehabilitation strategies for disorders affecting the nervous system are needed
Global, regional, and national burden of disorders affecting the nervous system, 1990–2021: a systematic analysis for the Global Burden of Disease Study 2021
BackgroundDisorders affecting the nervous system are diverse and include neurodevelopmental disorders, late-life neurodegeneration, and newly emergent conditions, such as cognitive impairment following COVID-19. Previous publications from the Global Burden of Disease, Injuries, and Risk Factor Study estimated the burden of 15 neurological conditions in 2015 and 2016, but these analyses did not include neurodevelopmental disorders, as defined by the International Classification of Diseases (ICD)-11, or a subset of cases of congenital, neonatal, and infectious conditions that cause neurological damage. Here, we estimate nervous system health loss caused by 37 unique conditions and their associated risk factors globally, regionally, and nationally from 1990 to 2021.MethodsWe estimated mortality, prevalence, years lived with disability (YLDs), years of life lost (YLLs), and disability-adjusted life-years (DALYs), with corresponding 95% uncertainty intervals (UIs), by age and sex in 204 countries and territories, from 1990 to 2021. We included morbidity and deaths due to neurological conditions, for which health loss is directly due to damage to the CNS or peripheral nervous system. We also isolated neurological health loss from conditions for which nervous system morbidity is a consequence, but not the primary feature, including a subset of congenital conditions (ie, chromosomal anomalies and congenital birth defects), neonatal conditions (ie, jaundice, preterm birth, and sepsis), infectious diseases (ie, COVID-19, cystic echinococcosis, malaria, syphilis, and Zika virus disease), and diabetic neuropathy. By conducting a sequela-level analysis of the health outcomes for these conditions, only cases where nervous system damage occurred were included, and YLDs were recalculated to isolate the non-fatal burden directly attributable to nervous system health loss. A comorbidity correction was used to calculate total prevalence of all conditions that affect the nervous system combined.FindingsGlobally, the 37 conditions affecting the nervous system were collectively ranked as the leading group cause of DALYs in 2021 (443 million, 95% UI 378–521), affecting 3·40 billion (3·20–3·62) individuals (43·1%, 40·5–45·9 of the global population); global DALY counts attributed to these conditions increased by 18·2% (8·7–26·7) between 1990 and 2021. Age-standardised rates of deaths per 100 000 people attributed to these conditions decreased from 1990 to 2021 by 33·6% (27·6–38·8), and age-standardised rates of DALYs attributed to these conditions decreased by 27·0% (21·5–32·4). Age-standardised prevalence was almost stable, with a change of 1·5% (0·7–2·4). The ten conditions with the highest age-standardised DALYs in 2021 were stroke, neonatal encephalopathy, migraine, Alzheimer's disease and other dementias, diabetic neuropathy, meningitis, epilepsy, neurological complications due to preterm birth, autism spectrum disorder, and nervous system cancer.InterpretationAs the leading cause of overall disease burden in the world, with increasing global DALY counts, effective prevention, treatment, and rehabilitation strategies for disorders affecting the nervous system are needed
Investigation of Incompatibility Reactions Caused by Biomaterials in Contact with Whole Blood Using a New in vitro Model.
This thesis describes a new in vitro slide chamber model that makes it possible to conduct studies of molecular and cellular interactions between whole blood and biomaterials. The model proved to be a suitable tool for detection of cell and platelet binding to a biomaterial surface. It was possible to monitor activation of the blood cascade systems and cells in the fluid phase and detect surface-bound molecules. One finding was that thrombin generation is primarily triggered by FXII on a biomaterial surface since corn trypsin inhibitor, inhibited thrombin generation in blood. Another finding was that thrombin generation was dependent on variety types of blood cells, since thrombin generation was almost negligible in platelet-rich plasma. When various preparations of blood cells were used to reconstitute platelet-rich and platelet-poor plasma, erythrocytes were shown to be the most efficient cell type in triggering thrombin generation. Inhibition of platelet aggregation with aspirin and Ro44-9883 was associated with a decrease in thrombin generation, confirming that platelet activation is necessary for normal coagulation activation. These findings suggest that the central events consist of an initial low-grade generation of thrombin that involves erythrocytes and possibly leukocytes which leads to activation of platelets; and a second platelet-dependent amplification loop that produces most of the thrombin. Titanium exposed to whole blood produced high amounts of thrombin. Stainless steel and PVC, generated lower amounts. This indicates that titanium might be less suitable as a biomaterial in devices that are in direct contact with blood for prolonged time. Considering the superior osteointegrating properties of titanium and titanium's response to blood, a correlation between high thrombogenicity and good osteointegration seems to exist. Compstatin, that binds to complement component C3, effectively inhibited the generation of C3a and sC5b-9 and the binding of C3/C3 fragments to the surface. Our results suggest that a biomaterial is able to activate complement through both the classical and alternative pathways and that the classical pathway alone is able to maintain a substantial bioincompatibility reaction. The results show that complement activation is a prerequisite for activation and binding of PMNs to the surface in the in vitro model
Recommended from our members
Protein Binding and Hepatic Clearance: Re-Examining the Discrimination between Models of Hepatic Clearance with Diazepam in the Isolated Perfused Rat Liver Preparation.
This study re-examined the hepatic extraction for diazepam, the only drug for which isolated perfused rat liver (IPRL) studies have been reported not to be consistent with the well stirred model of organ elimination when only entering and exiting liver concentration measurements are available. First, the time dependency of diazepam equilibrium fraction unbound measurements from 4 to 24 hours was tested, reporting the continuing increases with time. The results showed that the time dependency of equilibrium protein-binding measurements for very highly bound drugs may be an issue that is not readily overcome. When examining C out/C in (F obs) measurements for diazepam when no protein is added to the incubation media, IPRL outcomes were consistent with previous reports showing marked underpredictability of in vivo clearance from in vitro measures of elimination in the absence of protein for very highly bound drugs, which is markedly diminished in the presence of albumin. F obs for diazepam at additional low concentrations of protein that would allow discrimination of the models of hepatic elimination produced results that were not consistent with the dispersion and parallel-tube models. Therefore, although the outcomes of this study were similar to those reported by Rowland and co-workers, when no protein is added to the perfusion media, these IPRL results for diazepam cannot be reasonably interpreted as proving that hepatic organ elimination is model-independent or as supporting the dispersion and parallel-tube models of organ elimination. SIGNIFICANCE STATEMENT: The only drug experiments for which isolated perfusion rat liver studies do not support hepatic clearance being best described by the well stirred model have been carried out with diazepam at zero protein concentration. This study repeated those studies, confirming the previous results at zero protein concentration, but the addition of low protein-binding conditions capable of differentiating the various models of hepatic elimination are more consistent with the well stirred model of hepatic elimination. These experimental studies do not support the preference for alternate models of hepatic elimination or the proposal that hepatic organ clearance is model-independent
Recommended from our members
Protein Binding and Hepatic Clearance: Re-Examining the Discrimination between Models of Hepatic Clearance with Diazepam in the Isolated Perfused Rat Liver Preparation.
This study re-examined the hepatic extraction for diazepam, the only drug for which isolated perfused rat liver (IPRL) studies have been reported not to be consistent with the well stirred model of organ elimination when only entering and exiting liver concentration measurements are available. First, the time dependency of diazepam equilibrium fraction unbound measurements from 4 to 24 hours was tested, reporting the continuing increases with time. The results showed that the time dependency of equilibrium protein-binding measurements for very highly bound drugs may be an issue that is not readily overcome. When examining C out/C in (F obs) measurements for diazepam when no protein is added to the incubation media, IPRL outcomes were consistent with previous reports showing marked underpredictability of in vivo clearance from in vitro measures of elimination in the absence of protein for very highly bound drugs, which is markedly diminished in the presence of albumin. F obs for diazepam at additional low concentrations of protein that would allow discrimination of the models of hepatic elimination produced results that were not consistent with the dispersion and parallel-tube models. Therefore, although the outcomes of this study were similar to those reported by Rowland and co-workers, when no protein is added to the perfusion media, these IPRL results for diazepam cannot be reasonably interpreted as proving that hepatic organ elimination is model-independent or as supporting the dispersion and parallel-tube models of organ elimination. SIGNIFICANCE STATEMENT: The only drug experiments for which isolated perfusion rat liver studies do not support hepatic clearance being best described by the well stirred model have been carried out with diazepam at zero protein concentration. This study repeated those studies, confirming the previous results at zero protein concentration, but the addition of low protein-binding conditions capable of differentiating the various models of hepatic elimination are more consistent with the well stirred model of hepatic elimination. These experimental studies do not support the preference for alternate models of hepatic elimination or the proposal that hepatic organ clearance is model-independent
Blood coagulation on electron beam melted implant surfaces, implications for bone growth
INTRODUCTION Implants for arthroplasty, plates and screws for orthopedics, maxillofacial and dentistry are more frequently being customised. Ti and CoCr alloys are common materials for bone implants. Surface roughness, porosity and choice of material may have an impact on the bone ingrowth. EBM (Electron Beam Melting) is a 3D-printing technique melting metallic powder layer by layer according to the corresponding CAD (Computer Aided Design) model of implants1.With EBM technology customised implants can be manufactured with a lower cost compared to conventional technologies2. Implants for bone replacement made from CT images with EBM technology will fit accurate and lead to simpler and better planed surgeries also3. The EBM technique, as such, is always resulting with rough surface on the implants (typically 20-45µm). That roughness can be controlled, in some extent, by changing the process parameters. Some authors claim that roughened surfaces are promoting bone ingrowth4. This work was aiming on the question: are EBM made surfaces good for bone ingrowth and is it possible to change the bone ingrowth by varying the machine settings? In order to answer this question a number of coin like specimens of CoCr were manufactured with the different surface roughness. The blood chamber model has shown how the first steps of bone healing were proceeding on specimen surfaces, indicating how the coagulation and complement systems can behave in vivo5. EXPERIMENTAL METHODS The manufacture of the test specimens was carried out with Arcam A2 EBM® equipment. Process parameters were changed in the software EBM controle6 and three groups of eight specimens with different parameter setting were made. The specimens were then tested with whole blood from two individuals in a modified version of the blood chamber model named above7. Surface roughness was characterised with a stylus profiler Dektak® 6M. RESULTS AND DISCUSSION Table 1 percents Ra (average roughness) and plt (platelets) activated for each group. Table 1 group Ra mean std plt mean std 1 35.0µm 3.24µm 92.9% 5.25% 2 28.5µm 2.14µm 85.3% 7.61% 3 28.2µm 1.75µm 84.4% 10.3% The results indicate that rougher surfaces are more thrombogenic which could imply that they are more suitable for bone ingrowth then smooth surfaces. Increase of total surface area (due to larger roughness) might be a reason for the improved trombogenic response. Figure 1 shows how many platelets were stuck on the specimen surfaces. Horizontal lines represent mean values and standard deviation. CONCLUSION The surface properties of EBM produced implants are affected by the made parameters. The results in Figure 1 corresponds well with previous results that rougher surfaces promotes bone ingrowth4. The increased thrombogenicity and platelet binding with rougher surfaces indicates that EBM made surfaces can affect the final bone response and will possibly suit as implant material. REFERENCES 1. Raennar, L.E., et al., Efficientcooling with tool inserts manufactured by electronbeam melting. Rapid Prototyping Journal. 13:128-35, 2007 2. Cronskaer, M. Applications of Electron Beam Melting to Titanium Hip Stem Implants 3. Mazzoli, A., et al., Direct fabrication through electron beam melting technology of custom cranial implants designed in a PHANToM-based haptic environment. Materials and Design. 30:318-3192, 2009 4. Frosch, K.H., et al., Metallic Biomaterials in Skeletal Rapair. Eur J Trauma. 32:149-59, 2006 5. Thor A., et al.. The role of whole blood in thrombin generation in contact with various titanium surfaces. Biomaterials. 28:966-97, 2007 6. Arcam AB (www.arcam.com) 7. Hong, J., et al., A new in vitro model to study interaction between whole blood and biomaterials. Studies of platelet and coagulation activation acid the effect of aspirin. Biomaterials. 20:603-611, 199
<i>Trans</i> Effect in Halobismuthates and Haloantimonates Revisited. Molecular Structures and Vibrations from Theoretical Calculations
Ab initio and density functional
theory computations have been
carried out to calculate the structures and vibrational spectra of
halobismuthates and haloantimonates of formulas MX6<sup>3–</sup>, M<sub>2</sub>X<sub>10</sub><sup>4–</sup>, and M<sub>2</sub>X<sub>9</sub><sup>3–</sup> for M = Bi or Sb and X = I, Br,
or Cl. The results have been compared to experimental crystal structures
and the infrared and Raman spectra of these species as well as the
(MX<sub>5</sub><sup>2–</sup>)<sub><i>n</i></sub> and
(MX<sub>4</sub><sup>1–</sup>)<i><sub>n</sub></i> anions.
Even though the calculations neglect the effect of which cation is
present, they do a good job in verifying the observed trends in bond
distances and bond stretching vibrational frequencies. External bonds
across from bridging bonds are the shortest and have the highest stretching
frequencies for all of the ions investigated. This supports the previously
postulated “<i>trans</i> effect”. Since the
calculations were carried out for individual noninteracting anions,
the computed results can be expected to best represent the idealized
species unperturbed by the effect of the cations present. The <i>trans</i> effect results in shortening of the M–X bonds
by 0.08–0.13 Å. It also leads to frequency increases of
about 20% for the M–X stretching vibrations
- …