4,700 research outputs found

    Transitive X-ray spectrum and PeV gamma-ray cutoff in the M87 jet: Electron "Pevatron"

    Get PDF
    We propose a modified version of the X-ray spectral index and an intrinsic cutoff frequency of inverse Compton radiation from the brightest knot of the M87 jet, in conjunction with an application of the new conceptions of injection and diffusive shock acceleration (DSA) of electrons in magnetized filamentary plasma to the specified source. The drop of the X-ray flux density in a transitive frequency region is associated with the interplay of ordinary synchrotron cooling and weaker magnetic fields concomitant with the smaller scale filaments that allow the electron injection, while the radio-optical synchrotron continuum is dominantly established by the major electrons that are quasi-secularly bound to larger filaments. With reference to, particularly, the updated external Compton model, we demonstrate that in the Klein-Nishina regime fading inverse Comptonization, the injected electrons can be stochastically energized up to a Lorentz factor as high as 5×10105\times 10^{10} in the temporal competition with diffuse synchrotron cooling; this value is larger than that attainable for a simple DSA scenario based on the resonant scattering diffusion of the gyrating electrons bound to a supposed magnetic field homogeneously pervading the entire knot. The upper limits of the photon frequency boosted via conceivable inverse Compton processes are predicted to be of the common order of ∼1030\sim 10^{30} Hz. The variability of the broadband spectrum is also discussed in comparison to the features of a blazar light curve. The present scenario of a peta-eV (PeV; 101510^{15} eV) electron accelerator, the "Pevatron," might provide some guidance for exploring untrod hard X-ray and gamma-ray bands in forthcoming observations.Comment: 34 pages, 6 figures, matches version published in Ap

    Field-induced 3- and 2-dimensional freezing in a quantum spin liquid

    Full text link
    Field-induced commensurate transverse magnetic ordering is observed in the Haldane-gap compound \nd by means of neutron diffraction. Depending on the direction of applied field, the high-field phase is shown to be either a 3-dimensional ordered N\'{e}el state or a short-range ordered state with dominant 2-dimensional spin correlations. The structure of the high-field phase is determined, and properties of the observed quantum phase transition are discussed.Comment: 4 pages 3 figure

    Massive triplet excitations in a magnetized anisotropic Haldane spin chain

    Full text link
    Inelastic neutron scattering experiments on the Haldane-gap quantum antiferromagnet \nd are performed at mK temperatures in magnetic fields of almost twice the critical field HcH_c applied perpendicular to the spin cahins. Above HcH_c a re-opening of the spin gap is clearly observed. In the high-field N\'eel-ordered state the spectrum is dominated by three distinct long-lived excitation branches. Several field-theoretical models are tested in a quantitative comparison with the experimental data.Comment: 4 pages, 3 figure

    Spin-Reorientation Transition of Field-Induced Magnetic Ordering Phases in the Anisotropic Haldane System

    Full text link
    A possible spin-reorientation transition in field-induced magnetic ordering phases of the S=1 Haldane system with large easy-plane anisotropy is proposed, using an effective Lagrangian formalism as well as the density matrix renormalization group method. Such a spin-reorientation transition is predicted in the case where the applied magnetic field is inclined from the easy axis of the anisotropy. We point out that this transition has a close connection with a variation of the order parameter even at zero temperature, although it is different from a quantum analog of the so-called spin-flop transition proposed for the system having a strong easy axis anisotropy. In connection with a novel phase observed recently in the Haldane system at high fields, we discuss possible implications for the field-induced magnetic ordering.Comment: 14 pages, 7 figure

    Principal Component Analysis of Cavity Beam Position Monitor Signals

    Full text link
    Model-independent analysis (MIA) methods are generally useful for analysing complex systems in which relationships between the observables are non-trivial and noise is present. Principle Component Analysis (PCA) is one of MIA methods allowing to isolate components in the input data graded to their contribution to the variability of the data. In this publication we show how the PCA can be applied to digitised signals obtained from a cavity beam position monitor (CBPM) system on the example of a 3-cavity test system installed at the Accelerator Test Facility 2 (ATF2) at KEK in Japan. We demonstrate that the PCA based method can be used to extract beam position information, and matches conventional techniques in terms of performance, while requiring considerably less settings and data for calibration

    Quasi-elastic neutron scattering in the high-field phase of a Haldane antiferromagnet

    Full text link
    Inelastic neutron scattering experiments on the Haldane-gap quantum antiferromagnet NDMAP are performed in magnetic fields below and above the critical field Hc at which the gap closes. Quasi-elastic neutron scattering is found for H>Hc indicating topological excitations in the high field phase.Comment: Added to discussion section. v2: Updated figure

    Field-Induced Transition in the S=1 Antiferromagnetic Chain with Single-Ion Anisotropy in a Transverse Magnetic Field

    Full text link
    The field-induced transition in one-dimensional S=1 Heisenberg antiferromagnet with single-ion anisotropy in the presence of a transverse magnetic field is obtained on the basis of the Schwinger boson mean-field theory. The behaviors of the specific heat and susceptibility as functions of temperature as well as the applied transverse field are explored, which are found to be different from the results obtained under a longitudinal field. The anomalies of the specific heat at low temperatures, which might be an indicative of a field-induced transition from a Luttinger liquid phase to an ordered phase, are explicitly uncovered under the transverse field. A schematic phase diagram is proposed. The theoretical results are compared with experimental observations.Comment: Revtex, 7 figure

    Field-induced long-range order in the S=1 antiferromagnetic chain

    Full text link
    The quasi-one dimensional S=1 antiferromagnet in magnetic field H is investigated with the exact diagonalization of finite chains and the mean field approximation for the interchain interaction. In the presence of the single-ion anisotropy D, the full phase diagram in the HTHT plane is presented for H \parallel D and H \perp D. The shape of the field-induced long-range ordered phase is revealed to be quite different between the two cases, as observed in the recent experiment of NDMAP. The estimated ratio of the interchain and intrachain couplings of NDMAP (J'/J ~ 10^{-3}) is consistent with the neutron scattering measurement.Comment: 4 pages, Revtex, with 6 eps figure

    Haldane-gap excitations in the low-H_c 1-dimensional quantum antiferromagnet NDMAP

    Full text link
    Inelastic neutron scattering on deuterated single-crystal samples is used to study Haldane-gap excitations in the new S=1 one-dimensional quantum antiferromagnet NDMAP, that was recently recognized as an ideal model system for high-field studies. The Haldane gap energies Δx=0.42\Delta_x=0.42 meV, Δy=0.52\Delta_y=0.52 meV and Δz=1.86\Delta_z=1.86 meV, for excitations polarized along the a, b, and c crystallographic axes, respectively, are directly measured. The dispersion perpendicular to the chain axis c is studied, and extremely weak inter-chain coupling constants Jy=1.8⋅10−3J_y=1.8\cdot 10^{-3} meV and Jx=3.5⋅10−4J_x=3.5\cdot 10^{-4} meV, along the a and b axes, respectively, are determined. The results are discussed in the context of future experiments in high magnetic fields.Comment: 5 pages, 4 figures, submitted to Phys. Rev.

    Magnetization process for a quasi-one-dimensional S=1 antiferromagnet

    Full text link
    We investigate the magnetization process for a quasi-one-dimensional S=1 antiferromagnet with bond alternation. By combining the density matrix renormalization group method with the interchain mean-field theory, we discuss how the interchain coupling affects the magnetization curve. It is found that the width of the magnetization plateau is considerably reduced upon introducing the interchain coupling. We obtain the phase diagram in a magnetic field. The effect of single-ion anisotropy is also addressed.Comment: 6 pages, 7 eps figure
    • …
    corecore