10,308 research outputs found
Deformation of LeBrun's ALE metrics with negative mass
In this article we investigate deformations of a scalar-flat K\"ahler metric
on the total space of complex line bundles over CP^1 constructed by C. LeBrun.
In particular, we find that the metric is included in a one-dimensional family
of such metrics on the four-manifold, where the complex structure in the
deformation is not the standard one.Comment: 20 pages, no figure. V2: added two references, filled a gap in the
proof of Theorem 1.2. V3: corrected a wrong statement about Kuranishi family
of a Hirzebruch surface stated in the last paragraph in the proof of Theorem
1.2, and fixed a relevant error in the proof. Also added a reference [24]
about Kuranishi family of Hirzebruch surface
High-field phase diagram of the Haldane-gap antiferromagnet
We have determined the magnetic phase diagram of the quasi-one-dimensional
1 Heisenberg antiferromagnet by
specific heat measurements to 150 mK in temperature and 32 T in magnetic field.
When field is applied along the spin-chain direction, a new phase appears at
T. For the previously known phases of field-induced order,
accurate determination is made of the power-law exponents of the ordering
temperature near the zero-temperature critical field , owing to the
four-fold improvement of the minimum temperature over the previous work. The
results are compared with the predictions based on the Bose-Einstein
condensation of triplet excitations. Substituting deuterium for hydrogen is
found to slightly reduce the interchain exchange.Comment: 6 pages, 6 figure
Behavior of Li abundances in solar-analog stars II. Evidence of the connection with rotation and stellar activity
We previously attempted to ascertain why the Li I 6708 line-strengths of
Sun-like stars differ so significantly despite the superficial similarities of
stellar parameters. We carried out a comprehensive analysis of 118 solar
analogs and reported that a close connection exists between the Li abundance
A_Li and the line-broadening width (v_r+m; mainly contributed by rotational
effect), which led us to conclude that stellar rotation may be the primary
control of the surface Li content. To examine our claim in more detail, we
study whether the degree of stellar activity exhibits a similar correlation
with the Li abundance, which is expected because of the widely believed close
connection between rotation and activity. We measured the residual flux at the
line center of the strong Ca II 8542 line, r_0(8542), known to be a useful
index of stellar activity, for all sample stars using newly acquired spectra in
this near-IR region. The projected rotational velocity (v_e sin i) was
estimated by subtracting the macroturbulence contribution from v_r+m that we
had already established. A remarkable (positive) correlation was found in the
A_Li versus (vs.) r_0(8542) diagram as well as in both the r_0(8542) vs. v_e
sin i and A_Li vs. v_e sin i diagrams, as had been expected. With the
confirmation of rotation-dependent stellar activity, this clearly shows that
the surface Li abundances of these solar analogs progressively decrease as the
rotation rate decreases. Given this observational evidence, we conclude that
the depletion of surface Li in solar-type stars, probably caused by effective
envelope mixing, operates more efficiently as stellar rotation decelerates. It
may be promising to attribute the low-Li tendency of planet-host G dwarfs to
their different nature in the stellar angular momentum.Comment: 12 pages, 9 figures; accepted for publication in Astron. Astrophys
Bending and springback prediction method based on multi-scale finite element analyses for high bendability and low springback sheet generation
In this study, a sheet bendability and springback property evaluation technology through bending test simulations is newly developed using our multi-scale finite element analysis code, which is based on the crystallographic homogenization method
- …