11 research outputs found
Deep Depth From Focus
Depth from focus (DFF) is one of the classical ill-posed inverse problems in
computer vision. Most approaches recover the depth at each pixel based on the
focal setting which exhibits maximal sharpness. Yet, it is not obvious how to
reliably estimate the sharpness level, particularly in low-textured areas. In
this paper, we propose `Deep Depth From Focus (DDFF)' as the first end-to-end
learning approach to this problem. One of the main challenges we face is the
hunger for data of deep neural networks. In order to obtain a significant
amount of focal stacks with corresponding groundtruth depth, we propose to
leverage a light-field camera with a co-calibrated RGB-D sensor. This allows us
to digitally create focal stacks of varying sizes. Compared to existing
benchmarks our dataset is 25 times larger, enabling the use of machine learning
for this inverse problem. We compare our results with state-of-the-art DFF
methods and we also analyze the effect of several key deep architectural
components. These experiments show that our proposed method `DDFFNet' achieves
state-of-the-art performance in all scenes, reducing depth error by more than
75% compared to the classical DFF methods.Comment: accepted to Asian Conference on Computer Vision (ACCV) 201
3D Face Reconstruction from Light Field Images: A Model-free Approach
Reconstructing 3D facial geometry from a single RGB image has recently
instigated wide research interest. However, it is still an ill-posed problem
and most methods rely on prior models hence undermining the accuracy of the
recovered 3D faces. In this paper, we exploit the Epipolar Plane Images (EPI)
obtained from light field cameras and learn CNN models that recover horizontal
and vertical 3D facial curves from the respective horizontal and vertical EPIs.
Our 3D face reconstruction network (FaceLFnet) comprises a densely connected
architecture to learn accurate 3D facial curves from low resolution EPIs. To
train the proposed FaceLFnets from scratch, we synthesize photo-realistic light
field images from 3D facial scans. The curve by curve 3D face estimation
approach allows the networks to learn from only 14K images of 80 identities,
which still comprises over 11 Million EPIs/curves. The estimated facial curves
are merged into a single pointcloud to which a surface is fitted to get the
final 3D face. Our method is model-free, requires only a few training samples
to learn FaceLFnet and can reconstruct 3D faces with high accuracy from single
light field images under varying poses, expressions and lighting conditions.
Comparison on the BU-3DFE and BU-4DFE datasets show that our method reduces
reconstruction errors by over 20% compared to recent state of the art
Why rankings of biomedical image analysis competitions should be interpreted with care (vol 9, 5217, 2018)
In the original version of this Article the values in the rightmost column of Table 1 were inadvertently shifted relative to the other columns. This has now been corrected in the PDF and HTML versions of the Article
Why rankings of biomedical image analysis competitions should be interpreted with care
International challenges have become the standard for validation of biomedical image analysis methods. Given their scientific impact, it is surprising that a critical analysis of common practices related to the organization of challenges has not yet been performed. In this paper, we present a comprehensive analysis of biomedical image analysis challenges conducted up to now. We demonstrate the importance of challenges and show that the lack of quality control has critical consequences. First, reproducibility and interpretation of the results is often hampered as only a fraction of relevant information is typically provided. Second, the rank of an algorithm is generally not robust to a number of variables such as the test data used for validation, the ranking scheme applied and the observers that make the reference annotations. To overcome these problems, we recommend best practice guidelines and define open research questions to be addressed in the future
A Taxonomy and Evaluation of Dense Light Field Depth Estimation Algorithms
This paper presents the results of the depth estimation challenge for dense light fields, which took place at the second workshop on Light Fields for Computer Vision (LF4CV) in conjunction with CVPR 2017. The challenge consisted of submission to a recent benchmark [7], which allows a thorough performance analysis. While individual results are readily available on the benchmark web page http://www.lightfield-analysis.net, we take this opportunity to give a detailed overview of the current participants. Based on the algorithms submitted to our challenge, we develop a taxonomy of light field disparity estimation algorithms and give a report on the current state-ofthe- art. In addition, we include more comparative metrics, and discuss the relative strengths and weaknesses of the algorithms. Thus, we obtain a snapshot of where light field algorithm development stands at the moment and identify aspects with potential for further improvement
A Taxonomy and Evaluation of Dense Light Field Depth Estimation Algorithms
This paper presents the results of the depth estimation challenge for dense light fields, which took place at the second workshop on Light Fields for Computer Vision (LF4CV) in conjunction with CVPR 2017. The challenge consisted of submission to a recent benchmark [7], which allows a thorough performance analysis. While individual results are readily available on the benchmark web page http://www.lightfield-analysis.net, we take this opportunity to give a detailed overview of the current participants. Based on the algorithms submitted to our challenge, we develop a taxonomy of light field disparity estimation algorithms and give a report on the current state-ofthe- art. In addition, we include more comparative metrics, and discuss the relative strengths and weaknesses of the algorithms. Thus, we obtain a snapshot of where light field algorithm development stands at the moment and identify aspects with potential for further improvement