5 research outputs found

    Fano interference of the Higgs mode in cuprate high-Tc superconductors

    Full text link
    Despite decades of search for the pairing boson in cuprate high-Tc superconductors, its identity still remains debated to date. For this reason, spectroscopic signatures of electron-boson interactions in cuprates have always been a center of attention. For example, the kinks in the quasiparticle dispersion observed by angle-resolved photoemission spectroscopy (ARPES) studies have motivated a decade-long investigation of electron-phonon as well as electron-paramagnon interactions in cuprates. On the other hand, the overlap between the charge-order correlations and the pseudogap in the cuprate phase diagram has also generated discussions about the potential link between them. In the present study, we provide a fresh perspective on these intertwined interactions using the novel approach of Higgs spectroscopy, i.e. an investigation of the amplitude oscillations of the superconducting order parameter driven by a terahertz radiation. Uniquely for cuprates, we observe a Fano interference of its dynamically driven Higgs mode with another collective mode, which we reveal to be charge density wave fluctuations from an extensive doping- and magnetic field-dependent study. This finding is further corroborated by a mean field model in which we describe the microscopic mechanism underlying the interaction between the two orders. Our work demonstrates Higgs spectroscopy as a novel and powerful technique for investigating intertwined orders and microscopic processes in unconventional superconductors

    Perspectives of microwave quantum key distribution in open-air

    Full text link
    One of the cornerstones of quantum communication is the unconditionally secure distribution of classical keys between remote parties. This key feature of quantum technology is based on the quantum properties of propagating electromagnetic waves, such as entanglement, or the no-cloning theorem. However, these quantum resources are known to be susceptible to noise and losses, which are omnipresent in open-air communication scenarios. In this work, we theoretically investigate the perspectives of continuous-variable open-air quantum key distribution at microwave frequencies. In particular, we present a model describing the coupling of propagating microwaves with a noisy environment. Using a protocol based on displaced squeezed states, we demonstrate that continuous-variable quantum key distribution with propagating microwaves can be unconditionally secure at room temperature up to distances of around 200 meters. Moreover, we show that microwaves can potentially outperform conventional quantum key distribution at telecom wavelength at imperfect weather conditions.Comment: 13 pages, 6 figure
    corecore