112 research outputs found
Gene-expression profiles and oncogenes in pediatric T-cell acute lymphoblastic leukemia
Blood consists of serum and three other main ingredients: erythrocytes (red blood
cells), thrombocytes (platelets) and leukocytes (white blood cells). Leukocytes
normally compose less than 1% of the blood volume but have important functions
in our defense against foreign and endogenous pathogens. Many different
leukocytes can be distinguished, the main types being lymphocytes (~75% T-cells,
~25% B-cells), monocytes and granulocytes. All these different blood cells arise
through distinct and tightly controlled developmental stages from hematopoietic
precursor cells, which reside in the bone marrow and thymus (Figure 1). However,
sequential mutations, chromosomal rearrangements and epigenetic changes can
cause a precursor cell to be blocked from further differentiation and to start
proliferate in a uncontrollable manner which results in cancer. Uncontrolled
proliferation of blood precursor cells is called leukemia. Different types of
leukemia are distinguished based on their lineage of origin; myeloid or
lymphoblastic leukemia. Lymphoblastic leukemia can be further divided into Bcell
precursor (BCP) or T-cell lymphoblastic leukemia. In acute lymphoblastic
leukemia malignant cells are arrested at a relative immature stage whereas in
chronic lymphocytic leukemia, cells have a more differentiated phenotype
Thin endometrial lining:is it more prevalent in patients utilizing preimplantation genetic testing for monogenic disease (PGT-M) and related to prior hormonal contraceptive use?
STUDY QUESTION: Is a thin endometrial lining before ovulation triggering more prevalent in patients utilizing preimplantation genetic testing for monogenic disease (PGT-M) compared to the regular IVF/ICSI population and is this associated with prior hormonal contraceptive use? SUMMARY ANSWER: Thin (1 year prior to treatment). Endometrial thickness was routinely measured on the day of hCG triggering or 1 day prior. The prevalence of an endometrial lining or 8 mm (20.0% vs 1.7%, mean difference 18.3%, 95% CI: 2.3, 34.3%). A trend towards lower birth weight and gestation- and gender-adjusted birth weight (z-score) was also found in this group. No statistically significant differences were detected in pregnancy rate, live birth rate, or incidence of preterm delivery or SGA. Within the control group, no statistically significant differences were found in outcomes between patients with an endometrial lining 8 mm. LIMITATIONS, REASONS FOR CAUTION: The study is retrospective. Various types of hormonal contraceptives were reported which possibly exert different effects on the endometrial lining. In relation to pregnancy outcome measures, numbers were very limited; therefore, no firm conclusions should be drawn. WIDER IMPLICATIONS OF THE FINDINGS: This study provides further insight into the role of prior hormonal contraceptive use as a possible contributor to the occurrence of thin endometrial lining during ART treatment. Future studies should provide more information on its clinical relevance, to determine whether PGT-M patients can be reassured, or should be counselled to stop hormonal contraceptive use and change to an alternative contraceptive method prior to PGT treatment. STUDY FUNDING/COMPETING INTERESTS: No specific funding was used and no conflicts of interests are declared. TRIAL REGISTRATION NUMBER: N/A
Breakpoint sites disclose the role of the V(D)J recombination machinery in the formation of T-cell receptor (TCR) and non-TCR associated aberrations in T-cell acute lymphoblastic leukemia
Aberrant recombination between T-cell receptor genes and oncogenes gives rise to chromosomal translocations that are genetic hallmarks in several subsets of human T-cell acute lymphoblastic leukemias. The V(D)J recombination machinery has been shown to play a role in the formation of these T-cell receptor translocations. Other, non-T-cell receptor chromosomal aberrations, such as SIL-TAL1 deletions, have likewise been recognized as V(D)J recombination associated aberrations. Despite the postulated role of V(D)J recombination, the extent of the V(D)J recombination machinery involvement in the formation of T-cell receptor and non-T-cell receptor aberrations in T-cell acute lymphoblastic leuke
New Suggestions for the Mechanical Control of Bone Remodeling
Bone is constantly renewed over our lifetime through the process of bone (re)modeling. This process is important for bone to allow it to adapt to its mechanical environment and to repair damage from everyday life. Adaptation is thought to occur through the mechanosensitive response controlling the bone-forming and -resorbing cells. This report shows a way to extract quantitative information about the way remodeling is controlled using computer simulations. Bone resorption and deposition are described as two separate stochastic processes, during which a discrete bone packet is removed or deposited from the bone surface. The responses of the bone-forming and -resorbing cells to local mechanical stimuli are described by phenomenological remodeling rules. Our strategy was to test different remodeling rules and to evaluate the time evolution of the trabecular architecture in comparison to what is known from μ-CT measurements of real bone. In particular, we tested the reaction of virtual bone to standard therapeutic strategies for the prevention of bone deterioration, i.e., physical activity and medications to reduce bone resorption. Insensitivity of the bone volume fraction to reductions in bone resorption was observed in the simulations only for a remodeling rule including an activation barrier for the mechanical stimulus above which bone deposition is switched on. This is in disagreement with the commonly used rules having a so-called lazy zone
HOX-mediated LMO2 expression in embryonic mesoderm is recapitulated in acute leukaemias
The Lim Domain Only 2 (LMO2) leukaemia oncogene encodes an LIM domain transcriptional cofactor required for early haematopoiesis. During embryogenesis, LMO2 is also expressed in developing tail and limb buds, an expression pattern we now show to be recapitulated in transgenic mice by an enhancer in LMO2 intron 4. Limb bud expression depended on a cluster of HOX binding sites, while posterior tail expression required the HOX sites and two E-boxes. Given the importance of both LMO2 and HOX genes in acute leukaemias, we further demonstrated that the regulatory hierarchy of HOX control of LMO2 is activated in leukaemia mouse models as well as in patient samples. Moreover, Lmo2 knock-down impaired the growth of leukaemic cells, and high LMO2 expression at diagnosis correlated with poor survival in cytogenetically normal AML patients. Taken together, these results establish a regulatory hierarchy of HOX control of LMO2 in normal development, which can be resurrected during leukaemia development. Redeployment of embryonic regulatory hierarchies in an aberrant context is likely to be relevant in human pathologies beyond the specific example of ectopic activation of LMO2
The Influence of Mineralization on Intratrabecular Stress and Strain Distribution in Developing Trabecular Bone
The load-transfer pathway in trabecular bone is largely determined by its architecture. However, the influence of variations
in mineralization is not known. The goal of this study was to examine the influence of inhomogeneously distributed degrees
of mineralization (DMB) on intratrabecular stresses and strains. Cubic mandibular condylar bone specimens from fetal and newborn
pigs were used. Finite element models were constructed, in which the element tissue moduli were scaled to the local DMB. Disregarding
the observed distribution of mineralization was associated with an overestimation of average equivalent strain and underestimation
of von Mises equivalent stress. From the surface of trabecular elements towards their core the strain decreased irrespective
of tissue stiffness distribution. This indicates that the trabecular elements were bent during the compression experiment.
Inhomogeneously distributed tissue stiffness resulted in a low stress at the surface that increased towards the core. In contrast,
disregarding this tissue stiffness distribution resulted in high stress at the surface which decreased towards the core. It
was concluded that the increased DMB, together with concurring alterations in architecture, during development leads to a
structure which is able to resist increasing loads without an increase in average deformation, which may lead to damage
Effect of dynamic compressive loading and its combination with a growth factor on the chondrocytic phenotype of 3-dimensional scaffold-embedded chondrocytes
Background and purpose Three-dimensionally (3D-) embedded chondrocytes have been suggested to maintain the chondrocytic phenotype. Furthermore, mechanical stress and growth factors have been found to be capable of enhancing cell proliferation and ECM synthesis. We investigated the effect of mechanical loading and growth factors on reactivation of the 3D-embedded chondrocytes
Clinical and molecular characterization of early T-cell precursor leukemia: a high-risk subgroup in adult T-ALL with a high frequency of FLT3 mutations
A subgroup of pediatric acute T-lymphoblastic leukemia (T-ALL) was characterized by a gene expression profile comparable to that of early T-cell precursors (ETPs) with a highly unfavorable outcome. We have investigated clinical and molecular characteristics of the ETP-ALL subgroup in adult T-ALL. As ETP-ALL represents a subgroup of early T-ALL we particularly focused on this cohort and identified 178 adult patients enrolled in the German Acute Lymphoblastic Leukemia Multicenter studies (05/93–07/03). Of these, 32% (57/178) were classified as ETP-ALL based on their characteristic immunophenotype. The outcome of adults with ETP-ALL was poor with an overall survival of only 35% at 10 years, comparable to the inferior outcome of early T-ALL with 38%. The molecular characterization of adult ETP-ALL revealed distinct alterations with overexpression of stem cell-related genes (BAALC, IGFBP7, MN1, WT1). Interestingly, we found a low rate of NOTCH1 mutations and no FBXW7 mutations in adult ETP-ALL. In contrast, FLT3 mutations, rare in the overall cohort of T-ALL, were very frequent and nearly exclusively found in ETP-ALL characterized by a specific immunophenotype. These molecular characteristics provide biologic insights and implications with respect to innovative treatment strategies (for example, tyrosine kinase inhibitors) for this high-risk subgroup of adult ETP-ALL
BRCA1 mutation carriers have a lower number of mature oocytes after ovarian stimulation for IVF/PGD
Purpose The aim of this study was to determine whether BRCA1/2 mutation carriers produce fewer mature oocytes after ovarian stimulation for in vitro fertilization (IVF) with preimplantation genetic diagnosis (PGD), in comparison to a PGD control group. Methods A retrospective, international, multicenter cohort study was performed on data of first PGD cycles performed between January 2006 and September 2015. Data were extracted from medical files. The study was performed in one PGD center and three affiliated IVF centers in the Netherlands and one PGD center in Belgium. Exposed couples underwent PGD because of a pathogenic BRCA1/2 mutation, controls for other monogenic conditions. Only couples treated in a long gonadotropin-releasing hormone (GnRH) agonist-suppressive protocol, stimulated with at least 150 IU follicle stimulating hormone (FSH), were included. Women suspected to have a diminished ovarian reserve status due to chemotherapy, auto-immune disorders, or genetic conditions (other than BRCA1/2 mutations) were excluded. A total of 106 BRCA1/2 mutation carriers underwent PGD in this period, of which 43 (20 BRCA1 and 23 BRCA2 mutation carriers) met the inclusion criteria. They were compared to 174 controls selected by frequency matching. Results Thirty-eight BRCA1/2 mutation carriers (18 BRCA1 and 20 BRCA2 mutation carriers) and 154 controls proceeded to oocyte pickup. The median number of mature oocytes was 7.0 (interquartile range (IQR) 4.0-9.0) in the BRCA group as a whole, 6.5 (IQR 4.0-8.0) in BRCA1 mutation carriers, 7.5 (IQR 5.5-9.0) in BRCA2 mutation carriers, and 8.0 (IQR 6.0-11.0) in controls. Multiple linear regression analysis with the number of mature oocytes as a dependent variable and adjustment for treatment center, female age, female body mass index (BMI), type of gonadotropin used, and the total dose of gonadotropins administered revealed a significantly lower yield of mature oocytes in the BRCA group as compared to controls (p = 0.04). This finding could be fully accounted for by the BRCA1 subgroup (BRCA1 mutation carriers versus controls p = 0.02, BRCA2 mutation carriers versus controls p = 0.50). Conclusions Ovarian response to stimulation, expressed as the number of mature oocytes, was reduced in BRCA1 but not in BRCA2 mutation carriers. Although oocyte yield was in correspondence to a normal response in all subgroups, this finding points to a possible negative influence of the BRCA1 gene on ovarian reserv
Clinical application of scaffolds for cartilage tissue engineering
The purpose of this paper is to review the basic science and clinical literature on scaffolds clinically available for the treatment of articular cartilage injuries. The use of tissue-engineered grafts based on scaffolds seems to be as effective as conventional ACI clinically. However, there is limited evidence that scaffold techniques result in homogeneous distribution of cells. Similarly, few studies exist on the maintenance of the chondrocyte phenotype in scaffolds. Both of which would be potential advantages over the first generation ACI. The mean clinical score in all of the clinical literature on scaffold techniques significantly improved compared with preoperative values. More than 80% of patients had an excellent or good outcome. None of the short- or mid-term clinical and histological results of these tissue-engineering techniques with scaffolds were reported to be better than conventional ACI. However, some studies suggest that these methods may reduce surgical time, morbidity, and risks of periosteal hypertrophy and post-operative adhesions. Based on the available literature, we were not able to rank the scaffolds available for clinical use. Firm recommendations on which cartilage repair procedure is to be preferred is currently not known on the basis of these studies. Randomized clinical trials and longer follow-up periods are needed for more widespread information regarding the clinical effectiveness of scaffold-based, tissue-engineered cartilage repair
- …