91 research outputs found
Adolescents, Adults and Rewards: Comparing Motivational Neurocircuitry Recruitment Using fMRI
Background: Adolescent risk-taking, including behaviors resulting in injury or death, has been attributed in part to maturational differences in mesolimbic incentive-motivational neurocircuitry, including ostensible oversensitivity of the nucleus accumbens (NAcc) to rewards. Methodology/Principal Findings: To test whether adolescents showed increased NAcc activation by cues for rewards, or by delivery of rewards, we scanned 24 adolescents (age 12â17) and 24 adults age (22â42) with functional magnetic resonance imaging while they performed a monetary incentive delay (MID) task. The MID task was configured to temporally disentangle potential reward or potential loss anticipation-related brain signal from reward or loss notification-related signal. Subjects saw cues signaling opportunities to win or avoid losing .50, or $5 for responding quickly to a subsequent target. Subjects then viewed feedback of their trial success after a variable interval from cue presentation of between 6 to17 s. Adolescents showed reduced NAcc recruitment by reward-predictive cues compared to adult controls in a linear contrast with non-incentive cues, and in a volume-of-interest analysis of signal change in the NAcc. In contrast, adolescents showed little difference in striatal and frontocortical responsiveness to reward deliveries compared to adults. Conclusions/Significance: In light of divergent developmental difference findings between neuroimaging incentive paradigms (as well as at different stages within the same task), these data suggest that maturational differences i
Advanced paternal age effects in neurodevelopmental disorders?review of potential underlying mechanisms
Multiple epidemiological studies suggest a relationship between advanced paternal age (APA) at conception and adverse neurodevelopmental outcomes in offspring, particularly with regard to increased risk for autism and schizophrenia. Conclusive evidence about how age-related changes in paternal gametes, or age-independent behavioral traits affect neural development is still lacking. Recent evidence suggests that the origins of APA effects are likely to be multidimensional, involving both inherited predisposition and de novo events. Here we provide a review of the epidemiological and molecular findings to date. Focusing on the latter, we present the evidence for genetic and epigenetic mechanisms underpinning the association between late fatherhood and disorder in offspring. We also discuss the limitations of the APA literature. We propose that different hypotheses relating to the origins of the APA effects are not mutually exclusive. Instead, multiple mechanisms likely contribute, reflecting the etiological complexity of neurodevelopmental disorders
Use of Gold Nanoparticles To Enhance Capillary Electrophoresis
We describe here the use of gold nanoparticles to manipulate the selectivity between solutes in capillary electrophoresis. Two different gold-based nanoparticles were added to the run buffer. In one case, the nanoparticles were stabilized with citrate ions, but in another study, the gold nanoparticles were capped with mercaptopropionate ions (thiol-stablized). Citrate-stabilized gold nanoparticles were used in conjunction with capillaries treated with poly(diallyldimethylammonium chloride) (PDADMAC). The positively charged PDADMAC layer on the capillary walls adsorbs the negatively charged gold nanoparticles. The model solutes that were used to study the effect of the presence of the citrate-stabilized gold nanoparticles are structural isomers of aromatic acids and bases. The presence of the PDADMAC layer and the PDADMAC plus the gold nanoparticles changes both the electroosmotic mobility and the observed mobility of the solutes. These changes in the mobilities influence the observed selectivities and the separations of the system. Thiol-stabilized gold nanoparticles were used without PDADMAC in the capillary. The model solutes studied in this part are various aromatic amines. In this case as well, the presence of the gold nanoparticles modifies the electroosmotic mobility and the observed mobility of the solutes. These changes in the mobilities are manifested in selectivity alterations. The largest change in the selectivities occurs at low concentrations of the gold nanoparticles in the run buffer. The presence of nanoparticles improves the precision of the analysis and increases the separation efficiency. Nanodispersions have attracted extensive attention in various fields of physics, biology, and chemistry. [1][2][3][4][5] Physicists and chemists are intrigued by the gradual transition of the nanomaterial properties from molecule-like to those of solid-state properties by a change of a single variable, the particle size. This property has practical and future applications for nonlinear optics and electronics. The large surface area of nanomaterials intrigues chemical engineers and catalysis scientists. Surprisingly, very little research has been devoted to the application of nanoparticles for chemical separation. In this work, we demonstrate the utility and versatility of organically modified gold nanoparticles in capillary electrophoresis (CE) separations. The nanoparticles serve as large surface area platforms for organofunctional groups that interact with the capillary surface, the analytes, or both. Thus, the apparent mobilities of target analytes, as well as the electroosmotic flow, can be altered leading to enhanced selectivities. Separation of various benzene derivatives demonstrates these capabilities. Metallic nanodispersions can be prepared in aqueous and organic solvents using diverse procedures. 1,2,6-9 Nanodispersions can be stabilized in organic solvents by the solvent itself, 10 by the addition of long chain surfactants, 11,12 or by specific ligands. 13 Stabilization of metal nanodispersions in aqueous solutions is somewhat more complicated. Several successful stabilization methods are available that are based on capping of the metal nanoparticles (e.g., citrate, 6 3-mercaptopropionate, 1
- âŠ