5 research outputs found
Cooling Performance Improvement of the Heat Driven Type Metal Hydride Refrigerator-Heat Transfer Enhancement Influence of Metal Hydride Sheet Loading Into a Metal Hydride Particle Bed
In the refrigeration and air conditioning fields, the demands of energy conservation and renewable energy have been increased recently. In this study, we aim at the development of the heat driven type metal hydride (abbr., MH) that can be driven by the low temperature exhaust or solar heat under 100á”C. In order to use this system commercially, heat transfer enhancement of MH particle bed, activation characteric improvement and production cost reduction of MH must be achieved. In this study, we use the two heat transfer enhancement methods for improving the low effective thermal conductivity of MH particle bed. One is the MH sheet and another is the brush type carbon fiber. MH sheet is inserted into MH layer. And, by this method, we aim not only to enhance the heat transfer of MH particle bed but also to achieve the temperature uniformity of MH particle one. The cooling performance of our MH refrigeration system is estimated by measurement and calculation
Impact of the Ce states in the electronic structure of the intermediate-valence superconductor CeIr
The electronic structure of the -based superconductor
was studied by photoelectron spectroscopy. The energy distribution of the
states were revealed by the resonant
photoelectron spectroscopy. The states were mostly distributed
in the vicinity of the Fermi energy, suggesting the itinerant character of the
states. The contribution of the states to the
density of states (DOS) at the Fermi energy was estimated to be nearly half of
that of the states, implying that the states
have a considerable contribution to the DOS at the Fermi energy. The
core-level and X-ray absorption spectra were
analyzed based on a single-impurity Anderson model. The number of the
states in the ground state was estimated to be ,
which is much larger than the values obtained in the previous studies (i.e.,
).Comment: 9 pages, 4 figures, accepted to Electronic Structur
A global metagenomic map of urban microbiomes and antimicrobial resistance
We present a global atlas of 4,728 metagenomic samples from mass-transit systems in 60 cities over 3 years, representing the first systematic, worldwide catalog of the urban microbial ecosystem. This atlas provides an annotated, geospatial profile of microbial strains, functional characteristics, antimicrobial resistance (AMR) markers, and genetic elements, including 10,928 viruses, 1,302 bacteria, 2 archaea, and 838,532 CRISPR arrays not found in reference databases. We identified 4,246 known species of urban microorganisms and a consistent set of 31 species found in 97% of samples that were distinct from human commensal organisms. Profiles of AMR genes varied widely in type and density across cities. Cities showed distinct microbial taxonomic signatures that were driven by climate and geographic differences. These results constitute a high-resolution global metagenomic atlas that enables discovery of organisms and genes, highlights potential public health and forensic applications, and provides a culture-independent view of AMR burden in cities.Funding: the Tri-I Program in Computational Biology and Medicine (CBM) funded by NIH grant 1T32GM083937; GitHub; Philip Blood and the Extreme Science and Engineering Discovery Environment (XSEDE), supported by NSF grant number ACI-1548562 and NSF award number ACI-1445606; NASA (NNX14AH50G, NNX17AB26G), the NIH (R01AI151059, R25EB020393, R21AI129851, R35GM138152, U01DA053941); STARR Foundation (I13- 0052); LLS (MCL7001-18, LLS 9238-16, LLS-MCL7001-18); the NSF (1840275); the Bill and Melinda Gates Foundation (OPP1151054); the Alfred P. Sloan Foundation (G-2015-13964); Swiss National Science Foundation grant number 407540_167331; NIH award number UL1TR000457; the US Department of Energy Joint Genome Institute under contract number DE-AC02-05CH11231; the National Energy Research Scientific Computing Center, supported by the Office of Science of the US Department of Energy; Stockholm Health Authority grant SLL 20160933; the Institut Pasteur Korea; an NRF Korea grant (NRF-2014K1A4A7A01074645, 2017M3A9G6068246); the CONICYT Fondecyt IniciaciĂłn grants 11140666 and 11160905; Keio University Funds for Individual Research; funds from the Yamagata prefectural government and the city of Tsuruoka; JSPS KAKENHI grant number 20K10436; the bilateral AT-UA collaboration fund (WTZ:UA 02/2019; Ministry of Education and Science of Ukraine, UA:M/84-2019, M/126-2020); Kyiv Academic Univeristy; Ministry of Education and Science of Ukraine project numbers 0118U100290 and 0120U101734; Centro de Excelencia Severo Ochoa 2013â2017; the CERCA Programme / Generalitat de Catalunya; the CRG-Novartis-Africa mobility program 2016; research funds from National Cheng Kung University and the Ministry of Science and Technology; Taiwan (MOST grant number 106-2321-B-006-016); we thank all the volunteers who made sampling NYC possible, Minciencias (project no. 639677758300), CNPq (EDN - 309973/2015-5), the Open Research Fund of Key Laboratory of Advanced Theory and Application in Statistics and Data Science â MOE, ECNU, the Research Grants Council of Hong Kong through project 11215017, National Key RD Project of China (2018YFE0201603), and Shanghai Municipal Science and Technology Major Project (2017SHZDZX01) (L.S.