55 research outputs found

    Estrogen metabolites in a small cohort of patients with idiopathic pulmonary arterial hypertension.

    Get PDF
    Increased risk and severity of idiopathic pulmonary arterial hypertension (iPAH) is associated with elevated estradiol in men and postmenopausal women. Pulmonary arteries synthesise estradiol via aromatase and metabolise it via CYP1B1 to mitogenic metabolites; SNPs in aromatase and CYP1B1 have been associated with PAH. This suggests that estradiol metabolism could be altered in iPAH. This proof-of-concept study profiles estradiol and several metabolites of estradiol simultaneously in serum from iPAH patients and controls. We show that the estradiol and metabolite profile is altered in iPAH and that 16-hydroxyestrone and 16-hydroxyestradiol accumulate in iPAH patients with 16-hydroxyestrone levels relating to disease severity

    Metformin increases cortisol regeneration by 11βHSD1 in obese men with and without type 2 diabetes mellitus

    Get PDF
    CONTEXT:The mechanism of action of metformin remains unclear. Given the regulation of the cortisol-regenerating enzyme 11βhydroxysteroid dehydrogenase 1 (11βHSD1) by insulin and the limited efficacy of selective 11βHSD1 inhibitors to lower blood glucose when co-prescribed with metformin, we hypothesized that metformin reduces 11βHSD1 activity.OBJECTIVE:To determine whether metformin regulates 11βHSD1 activity in vivo in obese men with and without type 2 diabetes mellitus.DESIGN:Double-blind, randomized, placebo-controlled, crossover study.SETTING:A hospital clinical research facility.PARTICIPANTS:Eight obese nondiabetic (OND) men and eight obese men with type 2 diabetes (ODM).INTERVENTION:Participants received 28 days of metformin (1 g twice daily), placebo, or (in the ODM group) gliclazide (80 mg twice daily) in random order. A deuterated cortisol infusion at the end of each phase measured cortisol regeneration by 11βHSD1. Oral cortisone was given to measure hepatic 11βHSD1 activity in the ODM group. The effect of metformin on 11βHSD1 was also assessed in human hepatocytes and Simpson-Golabi-Behmel syndrome adipocytes.MAIN OUTCOME MEASURES:The effect of metformin on whole-body and hepatic 11βHSD1 activity.RESULTS:Whole-body 11βHSD1 activity was approximately 25% higher in the ODM group than the OND group. Metformin increased whole-body cortisol regeneration by 11βHSD1 in both groups compared with placebo and gliclazide and tended to increase hepatic 11βHSD1 activity. In vitro, metformin did not increase 11βHSD1 activity in hepatocytes or adipocytes.CONCLUSIONS:Metformin increases whole-body cortisol generation by 11βHSD1 probably through an indirect mechanism, potentially offsetting other metabolic benefits of metformin. Co-prescription with metformin should provide a greater target for selective 11βHSD1 inhibitors
    corecore