4 research outputs found
Fermions tunnelling from the charged dilatonic black holes
Kerner and Mann's recent work shows that, for an uncharged and non-rotating
black hole, its Hawking temperature can be exactly derived by fermions
tunnelling from its horizons. In this paper, our main work is to improve the
analysis to deal with charged fermion tunnelling from the general dilatonic
black holes, specifically including the charged, spherically symmetric
dilatonic black hole, the rotating Einstein-Maxwell-Dilaton-Axion (EMDA) black
hole and the rotating Kaluza-Klein (KK) black hole. As a result, the correct
Hawking temperatures are well recovered by charged fermions tunnelling from
these black holes.Comment: 16 pages, revised version to appear in Class. Quant. Gra
Stochastic Gravity: Theory and Applications
Whereas semiclassical gravity is based on the semiclassical Einstein equation
with sources given by the expectation value of the stress-energy tensor of
quantum fields, stochastic semiclassical gravity is based on the
Einstein-Langevin equation, which has in addition sources due to the noise
kernel. In the first part, we describe the fundamentals of this new theory via
two approaches: the axiomatic and the functional. In the second part, we
describe three applications of stochastic gravity theory. First, we consider
metric perturbations in a Minkowski spacetime, compute the two-point
correlation functions of these perturbations and prove that Minkowski spacetime
is a stable solution of semiclassical gravity. Second, we discuss structure
formation from the stochastic gravity viewpoint. Third, we discuss the
backreaction of Hawking radiation in the gravitational background of a black
hole and describe the metric fluctuations near the event horizon of an
evaporating black holeComment: 100 pages, no figures; an update of the 2003 review in Living Reviews
in Relativity gr-qc/0307032 ; it includes new sections on the Validity of
Semiclassical Gravity, the Stability of Minkowski Spacetime, and the Metric
Fluctuations of an Evaporating Black Hol