227 research outputs found

    Thermodynamics and area in Minkowski space: Heat capacity of entanglement

    Full text link
    Tracing over the degrees of freedom inside (or outside) a sub-volume V of Minkowski space in a given quantum state |psi>, results in a statistical ensemble described by a density matrix rho. This enables one to relate quantum fluctuations in V when in the state |psi>, to statistical fluctuations in the ensemble described by rho. These fluctuations scale linearly with the surface area of V. If V is half of space, then rho is the density matrix of a canonical ensemble in Rindler space. This enables us to `derive' area scaling of thermodynamic quantities in Rindler space from area scaling of quantum fluctuations in half of Minkowski space. When considering shapes other than half of Minkowski space, even though area scaling persists, rho does not have an interpretation as a density matrix of a canonical ensemble in a curved, or geometrically non-trivial, background.Comment: 17 page

    Entanglement in Quantum Spin Chains, Symmetry Classes of Random Matrices, and Conformal Field Theory

    Full text link
    We compute the entropy of entanglement between the first NN spins and the rest of the system in the ground states of a general class of quantum spin-chains. We show that under certain conditions the entropy can be expressed in terms of averages over ensembles of random matrices. These averages can be evaluated, allowing us to prove that at critical points the entropy grows like Îșlog⁥2N+Îș~\kappa\log_2 N + {\tilde \kappa} as N→∞N\to\infty, where Îș\kappa and Îș~{\tilde \kappa} are determined explicitly. In an important class of systems, Îș\kappa is equal to one-third of the central charge of an associated Virasoro algebra. Our expression for Îș\kappa therefore provides an explicit formula for the central charge.Comment: 4 page

    Universality of Entropy Scaling in 1D Gap-less Models

    Full text link
    We consider critical models in one dimension. We study the ground state in thermodynamic limit [infinite lattice]. Following Bennett, Bernstein, Popescu, and Schumacher, we use the entropy of a sub-system as a measure of entanglement. We calculate the entropy of a part of the ground state. At zero temperature it describes entanglement of this part with the rest of the ground state. We obtain an explicit formula for the entropy of the subsystem at low temperature. At zero temperature we reproduce a logarithmic formula of Holzhey, Larsen and Wilczek. Our derivation is based on the second law of thermodynamics. The entropy of a subsystem is calculated explicitly for Bose gas with delta interaction, the Hubbard model and spin chains with arbitrary value of spin.Comment: A section on spin chains with arbitrary value of spin is included. The entropy of a subsystem is calculated explicitly as a function of spin. References update

    Entropy, holography and the second law

    Full text link
    The geometric entropy in quantum field theory is not a Lorentz scalar and has no invariant meaning, while the black hole entropy is invariant. Renormalization of entropy and energy for reduced density matrices may lead to the negative free energy even if no boundary conditions are imposed. Presence of particles outside the horizon of a uniformly accelerated observer prevents the description in terms of a single Unruh temperature.Comment: 4 pages, RevTex 4, 1 eps figur

    Dilaton Black Holes with Electric Charge

    Get PDF
    Static spherically symmetric solutions of the Einstein-Maxwell gravity with the dilaton field are described. The solutions correspond to black holes and are generalizations of the previously known dilaton black hole solution. In addition to mass and electric charge these solutions are labeled by a new parameter, the dilaton charge of the black hole. Different effects of the dilaton charge on the geometry of space-time of such black holes are studied. It is shown that in most cases the scalar curvature is divergent at the horizons. Another feature of the dilaton black hole is that there is a finite interval of values of electric charge for which no black hole can exist.Comment: 20 pages, LaTeX file + 1 figure, CALT-68-1885. (the postscript file is improved

    Quasi-normal modes of charged, dilaton black holes

    Get PDF
    In this paper we study the perturbations of the charged, dilaton black hole, described by the solution of the low energy limit of the superstring action found by Garfinkle, Horowitz and Strominger. We compute the complex frequencies of the quasi-normal modes of this black hole, and compare the results with those obtained for a Reissner-Nordstr\"{o}m and a Schwarzschild black hole. The most remarkable feature which emerges from this study is that the presence of the dilaton breaks the \emph{isospectrality} of axial and polar perturbations, which characterizes both Schwarzschild and Reissner-Nordstr\"{o}m black holes.Comment: 15 pages, 5 figure

    Cosmological Multi-Black Hole Solutions

    Get PDF
    We present simple, analytic solutions to the Einstein-Maxwell equation, which describe an arbitrary number of charged black holes in a spacetime with positive cosmological constant Λ\Lambda. In the limit Λ=0\Lambda=0, these solutions reduce to the well known Majumdar-Papapetrou (MP) solutions. Like the MP solutions, each black hole in a Λ>0\Lambda >0 solution has charge QQ equal to its mass MM, up to a possible overall sign. Unlike the Λ=0\Lambda = 0 limit, however, solutions with Λ>0\Lambda >0 are highly dynamical. The black holes move with respect to one another, following natural trajectories in the background deSitter spacetime. Black holes moving apart eventually go out of causal contact. Black holes on approaching trajectories ultimately merge. To our knowledge, these solutions give the first analytic description of coalescing black holes. Likewise, the thermodynamics of the Λ>0\Lambda >0 solutions is quite interesting. Taken individually, a ∣Q∣=M|Q|=M black hole is in thermal equilibrium with the background deSitter Hawking radiation. With more than one black hole, because the solutions are not static, no global equilibrium temperature can be defined. In appropriate limits, however, when the black holes are either close together or far apart, approximate equilibrium states are established.Comment: 15 pages (phyzzx), UMHEP-380 (minor referencing error corrected

    Entanglement entropy in curved spacetimes with event horizons

    Get PDF
    We consider the computation of the entanglement entropy in curved backgrounds with event horizons. We use a Hamiltonian approach to the problem and perform numerical computations on a spherical lattice of spacing aa. We study the cosmological case and make explicit computations for the Friedmann-Robertson-Walker universe. Our results for a massless, minimally coupled scalar field can be summarized by Sent=0.30rH2/a2S_{ent}=0.30 r_H^2/a^2,which resembles the flat space formula, although here the horizon radius, rHr_H, is time-dependent.Comment: 12 pages, RevTex 3.0, 2 figures as uuencoded compressed Postscript file

    Photovoltaic Performance of FAPbI3 Perovskite Is Hampered by Intrinsic Quantum Confinement

    Get PDF
    Formamidinium lead trioiodide (FAPbI3) is a promising perovskite for single-junction solar cells. However, FAPbI3 is metastable at room temperature and can cause intrinsic quantum confinement effects apparent through a series of above-bandgap absorption peaks. Here, we explore three common solution-based film-fabrication methods, neat N,N-dimethylformamide (DMF)–dimethyl sulfoxide (DMSO) solvent, DMF-DMSO with methylammonium chloride, and a sequential deposition approach. The latter two offer enhanced nucleation and crystallization control and suppress such quantum confinement effects. We show that elimination of these absorption features yields increased power conversion efficiencies (PCEs) and short-circuit currents, suggesting that quantum confinement hinders charge extraction. A meta-analysis of literature reports, covering 244 articles and 825 photovoltaic devices incorporating FAPbI3 films corroborates our findings, indicating that PCEs rarely exceed a 20% threshold when such absorption features are present. Accordingly, ensuring the absence of these absorption features should be the first assessment when designing fabrication approaches for high-efficiency FAPbI3 solar cells
    • 

    corecore