16 research outputs found

    Optically-Heralded Entanglement of Superconducting Systems in Quantum Networks

    Full text link
    Networking superconducting quantum computers is a longstanding challenge in quantum science. The typical approach has been to cascade transducers: converting to optical frequencies at the transmitter and to microwave frequencies at the receiver. However, the small microwave-optical coupling and added noise have proven formidable obstacles. Instead, we propose optical networking via heralding end-to-end entanglement with one detected photon and teleportation. In contrast to cascaded direct transduction, our scheme absorbs the low optical-microwave coupling efficiency into the heralding step, thus breaking the rate-fidelity trade-off. Moreover, this technique unifies and simplifies entanglement generation between superconducting devices and other physical modalities in quantum networks

    Airfoil Selection and Wingsail Design for an Autonomous Sailboat

    Get PDF
    Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 1092)Ocean exploration and monitoring with autonomous platforms can provide researchers and decision makers with valuable data, trends and insights into the largest ecosystem on Earth. Regardless of the recognition of the importance of such platforms in this scenario, their design and development remains an open challenge. In particular, energy efficiency, control and robustness are major concerns with implications in terms of autonomy and sustainability. Wingsails allow autonomous boats to navigate with increased autonomy, due to lower power consumption, and greater robustness, due to simpler control. Within the scope of a project that addresses the design, development and deployment of a rigid wing autonomous sailboat to perform long term missions in the ocean, this paper summarises the general principles for airfoil selection and wingsail design in robotic sailing, and are given some insights on how these aspects influence the autonomous sailboat being developed by the authors.info:eu-repo/semantics/publishedVersio

    Coherent control of a superconducting qubit using light

    Full text link
    Quantum science and technology promise the realization of a powerful computational resource that relies on a network of quantum processors connected with low loss and low noise communication channels capable of distributing entangled states [1,2]. While superconducting microwave qubits (3-8 GHz) operating in cryogenic environments have emerged as promising candidates for quantum processor nodes due to their strong Josephson nonlinearity and low loss [3], the information between spatially separated processor nodes will likely be carried at room temperature via telecommunication photons (200 THz) propagating in low loss optical fibers. Transduction of quantum information [4-10] between these disparate frequencies is therefore critical to leverage the advantages of each platform by interfacing quantum resources. Here, we demonstrate coherent optical control of a superconducting qubit. We achieve this by developing a microwave-optical quantum transducer that operates with up to 1.18% conversion efficiency (1.16% cooperativity) and demonstrate optically-driven Rabi oscillations (2.27 MHz) in a superconducting qubit without impacting qubit coherence times (800 ns). Finally, we discuss outlooks towards using the transducer to network quantum processor nodes

    Quantum interference of electromechanically stabilized emitters in nanophotonic devices

    Full text link
    Photon-mediated coupling between distant matter qubits may enable secure communication over long distances, the implementation of distributed quantum computing schemes, and the exploration of new regimes of many-body quantum dynamics. Nanophotonic devices coupled to solid-state quantum emitters represent a promising approach towards realization of these goals, as they combine strong light-matter interaction and high photon collection efficiencies. However, the scalability of these approaches is limited by the frequency mismatch between solid-state emitters and the instability of their optical transitions. Here we present a nano-electromechanical platform for stabilization and tuning of optical transitions of silicon-vacancy (SiV) color centers in diamond nanophotonic devices by dynamically controlling their strain environments. This strain-based tuning scheme has sufficient range and bandwidth to alleviate the spectral mismatch between individual SiV centers. Using strain, we ensure overlap between color center optical transitions and observe an entangled superradiant state by measuring correlations of photons collected from the diamond waveguide. This platform for tuning spectrally stable color centers in nanophotonic waveguides and resonators constitutes an important step towards a scalable quantum network

    Strain engineering of the silicon-vacancy center in diamond

    Get PDF
    We control the electronic structure of the silicon-vacancy (SiV) color-center in diamond by changing its static strain environment with a nano-electro-mechanical system. This allows deterministic and local tuning of SiV optical and spin transition frequencies over a wide range, an essential step towards multi-qubit networks. In the process, we infer the strain Hamiltonian of the SiV revealing large strain susceptibilities of order 1 PHz/strain for the electronic orbital states. We identify regimes where the spin-orbit interaction results in a large strain suseptibility of order 100 THz/strain for spin transitions, and propose an experiment where the SiV spin is strongly coupled to a nanomechanical resonator

    Strain engineering of the silicon-vacancy center in diamond

    Get PDF
    We control the electronic structure of the silicon-vacancy (SiV) color-center in diamond by changing its static strain environment with a nano-electro-mechanical system. This allows deterministic and local tuning of SiV optical and spin transition frequencies over a wide range, an essential step towards multiqubit networks. In the process, we infer the strain Hamiltonian of the SiV revealing large strain susceptibilities of order 1 PHz/strain for the electronic orbital states. We identify regimes where the spin-orbit interaction results in a large strain susceptibility of order 100 THz/strain for spin transitions, and propose an experiment where the SiV spin is strongly coupled to a nanomechanical resonator

    Error corrected spin-state readout in a nanodiamond

    No full text
    Quantum state readout is a key component of quantum technologies, including applications in sensing, computation, and secure communication. Readout fidelity can be enhanced by repeating readouts. However, the number of repeated readouts is limited by measurement backaction, which changes the quantum state that is measured. This detrimental effect can be overcome by storing the quantum state in an ancilla qubit, chosen to be robust against measurement backaction and to allow error correction. Here, we protect the electronic-spin state of a diamond nitrogen-vacancy center from measurement backaction using a robust multilevel 14N nuclear spin memory and perform repetitive readout, as demonstrated in previous work on bulk diamond devices. We achieve additional protection using error correction based on the quantum logic of coherent feedback to reverse measurement backaction. The repetitive spin readout scheme provides a 13-fold enhancement of readout fidelity over conventional readout and the error correction a 2-fold improvement in the signal. These experiments demonstrate full quantum control of a nitrogen vacancy center electronic spin coupled to its host 14N nuclear spin inside a ~25 nm nanodiamond, creating a sensitive and biologically compatible platform for nanoscale quantum sensing. Our error-corrected repetitive readout scheme is particularly useful for quadrupolar nuclear magnetic resonance imaging in the low magnetic field regime where conventional repetitive readout suffers from strong measurement backaction. More broadly, methods for correcting longitudinal (bit-flip) errors described here could be used to improve quantum algorithms that require nonvolatile local memory, such as correlation spectroscopy measurements for high resolution sensing.Quantum Technology Hub NQIT EP/M013243/
    corecore