7 research outputs found

    Homologation of halostannanes with carbenoids: a convenient and straightforward one-step access to α-functionalized organotin reagents

    No full text
    A direct, single synthetic homologative transformation of halostannanes into mono- or di-substituted methyl analogues is documented. Critical for the success of the operation is the excellent nucleophilicity of carbenoid-like methyllithium reagents (LiCHXY, X, Y = halogen, OR, and CN): by simply individuating the reagents’ substitution pattern, the desired functionalized fragment is delivered to the electrophile. The wide scope of the protocol is evidenced also in the case of analogous halogermanium compounds. The tandem homologation–quenching with nucleophiles and the use of α-chloroallyllithium is also discussed

    Evidence and isolation of tetrahedral intermediates formed upon the addition of lithium carbenoids to Weinreb amides and N-acylpyrroles

    No full text
    The tetrahedral intermediates generated upon the addition of halolithium carbenoids (LiCH2X and LiCHXY) to Weinreb amides have been intercepted and fully characterized as O-TMS heminals. The commercially available N-trimethylsilyl imidazole is the ideal trapping agent whose employment, combined with a straightforward neutral Alox chromatographic purification, enables the isolation of such labile species. The procedure could be advantageously extended also for obtaining O-TMS heminals from N-acylpyrroles. These intermediates manifest interesting reactivity including as precursors of more complex carbenoids

    Synthesis of tetrasubstituted pyrazoles containing pyridinyl substituents

    No full text
    A synthesis of tetrasubstituted pyrazoles containing two, three or four pyridinyl substituents is described. Hence, the reaction of 1,3-dipyridinyl-1,3-propanediones with 2-hydrazinopyridine or phenylhydrazine, respectively, affords the corresponding 1,3,5-trisubstituted pyrazoles. Iodination at the 4-position of the pyrazole nucleus by treatment with I2/HIO3 gives the appropriate 4-iodopyrazoles which served as starting materials for different cross-coupling reactions. Finally, Negishi cross-coupling employing organozinc halides and Pd catalysts turned out to be the method of choice to obtain the desired tetrasubstituted pyrazoles. The formation of different unexpected reaction products is described. Detailed NMR spectroscopic investigations (1H, 13C, 15N) were undertaken with all products prepared. Moreover, the structure of a condensation product was confirmed by crystal structure analysis.© 2017 Jansa et al

    Highly chemoselective difluoromethylative homologation of iso(thio)cyanates: expeditious access to unprecedented α,α-difluoro(thio)amides

    No full text
    The new motif – α,α-difluoromethyl thioamide – has been assembled starting from isothiocyanate (as thioamide precursor) and a formal difluoromethyl-carbanion generated from commercially available TMSCHF2. Upon proper activation of this reagent with potassium tert-amylate, the high-yielding transfer of the difluorinated nucleophile takes place under high chemocontrol. Various sensitive functionalities (e.g. ester, nitrile, nitro, azido groups) can be accommodated across the isothiocyanate core, thus allowing a wide scope. The methodology is highly flexible and adaptable to prepare analogous α,α-difluoromethyl oxoamides by conveniently using isocyanates as the electrophilic building-blocks

    Synthesis and in Silico Evaluation of Novel Compounds for PET-Based Investigations of the Norepinephrine Transporter

    No full text
    Since the norepinephrine transporter (NET) is involved in a variety of diseases, the investigation of underlying dysregulation-mechanisms of the norepinephrine (NE) system is of major interest. Based on the previously described highly potent and selective NET ligand 1-(3-(methylamino)-1-phenylpropyl)-3-phenyl-1,3-dihydro-2H-benzimidaz- ol- 2-one (Me@APPI), this paper aims at the development of several fluorinated methylaminebased analogs of this compound. The newly synthesized compounds were computationally evaluated for their interactions with the monoamine transporters and represent reference compounds for PET-based investigation of the NET

    Dipyrazolo[1,5-a:4',3'-c]pyridines – a new heterocyclic system accessed via multicomponent reaction

    No full text
    The synthesis of dipyrazolo[1,5-a:4',3'-c]pyridines is described. Easily obtainable 5-alkynylpyrazole-4-carbaldehydes, p-toluenesulfonyl hydrazide, and an aldehyde or ketone containing an α-hydrogen atom were reacted in a silver triflate catalyzed multicomponent reaction affording new tricyclic compounds with a dipyrazolo[1,5-a:4',3'-c]pyridine core. Detailed NMR spectroscopic investigations (1H, 13C and 15N) were undertaken with all obtained compounds
    corecore