6 research outputs found
Self-gravitating Klein-Gordon fields in asymptotically Anti-de-Sitter spacetimes
We initiate the study of the spherically symmetric Einstein-Klein-Gordon
system in the presence of a negative cosmological constant, a model appearing
frequently in the context of high-energy physics. Due to the lack of global
hyperbolicity of the solutions, the natural formulation of dynamics is that of
an initial boundary value problem, with boundary conditions imposed at null
infinity. We prove a local well-posedness statement for this system, with the
time of existence of the solutions depending only on an invariant H^2-type norm
measuring the size of the Klein-Gordon field on the initial data. The proof
requires the introduction of a renormalized system of equations and relies
crucially on r-weighted estimates for the wave equation on asymptotically AdS
spacetimes. The results provide the basis for our companion paper establishing
the global asymptotic stability of Schwarzschild-Anti-de-Sitter within this
system.Comment: 50 pages, v2: minor changes, to appear in Annales Henri Poincar\'
Asymptotic properties of linear field equations in anti-de sitter space
We study the global dynamics of the wave equation, Maxwell’s equation and the linearized Bianchi equations on a fixed anti-de Sitter (AdS) background. Provided dissipative boundary conditions are imposed on the dynamical fields we prove uniform boundedness of the natural energy as well as both degenerate (near the AdS boundary) and non-degenerate integrated decay estimates. Remarkably, the non-degenerate estimates “lose a derivative”. We relate this loss to a trapping phenomenon near the AdS boundary, which itself originates from the properties of (approximately) gliding rays near the boundary. Using the Gaussian beam approximation we prove that non-degenerate energy decay without loss of derivatives does not hold. As a consequence of the non-degenerate integrated decay estimates, we also obtain pointwise-in-time decay estimates for the energy. Our paper provides the key estimates for a proof of the non-linear stability of the anti-de Sitter spacetime under dissipative boundary conditions. Finally, we contrast our results with the case of reflecting boundary conditions