83 research outputs found

    Systematic chemical variations in large 3AB iron meteorites: Clues to core crystallization

    Get PDF
    Analysis of numerous individual iron meteorites have shown that fractional crystallization of iron cores result in variations in chemical concentration of the solid core which span several orders of magnitude. The magnitude and direction of the resulting spatial gradients in the core can provide clues to the physical nature of the core crystallization process. We have analyzed suites of samples from three large 3AB irons (Cape York, 58t; Chupaderos, 24t; Morito, 10t) in order to estimate local chemical gradients. Initial results for the concentrations of Ge, Pd, Pt (Massey group), Ir, Au, As, Co, Os, and Rh (Dalhouse group), and P (Arizona group) show significant ranges among the Cape York and Chupaderos samples and marginally significant ranges among the Morito samples. Measurements of Au, Ir, Co, Ni, Cu, Ga, As, W, Re (from UCLA) and Ni and Co (Arizona group) are in progress. We find a spatial Ir gradient in Chupaderos with a magnitude similar to the one reported for Agpalilik (Cape York iron) by Esbensen et al

    Multiphysics Modelling of the Mandel- Cryer Effect

    No full text
    In porous medium studies the Mandel-Cryer effect is known, describing non-monotonic pore-water pressure evolution in response to loading or to changed stress conditions. In a 2D poro-elastic model we couple the pore water hydraulics with mechanics (HM). The Mandel-Cryer effect is identified in parts of the model region that are far from the drainage boundary. At parts of the loaded boundary an even more complex pressure evolution is revealed. Variations of the Biot-parameter as the coupling parameter clearly indicate the relevance of the two-way coupling between the involved physical regimes. Hence the Mandel-Cryer effect is a typical result of multi-physical coupling

    Modeling Pathways and Stages of CO2 Storage

    No full text
    The storage of CO2 in deep geological formations can be partitioned in three stages: diffusion, early and late convection. Convection emerges as a phenomenon of coupled flow and transport in porous media. For the characterization of the three stages we use numerical experiments with perturbations of a reference homogeneous situation. We explore the effect of different type and size of perturbations. The simulations show that the onset of the convection state depends strongly not only on the perturbations, but also on settings of the numerical method. Moreover it is found that the early convection state may consist of several peaks and is thus more complex than in the idealized simple concept of a single peak. For the late convection stage the decrease of the total mass transfer into the system is generally confirmed, within uncertainty margins

    The Henry-Saltwater Intrusion Benchmark – Alternatives in Multiphysics Formulations and Solution Strategies

    No full text
    In a classical paper Henry set up a conceptual model for simulating saltwater intrusion into coastal aquifers. Up to now the problem has been taken up by software developers and modellers as a benchmark for codes simulating coupled flow and transport in porous media. The Henry test case has been treated using different numerical methods based on various formulations of differential equations. We compare several of these approaches using multiphysics software. We model the problem using Finite Elements, utilizing the primitive variables and the streamfunction approach, both with and without using the Oberbeck-Boussinesq assumption. We compare directly coupled solvers with segregated solver strategies. Changing finite element orders and mesh refinement, we find that models based on the streamfunction converge 2-4 times faster than runs based on primitive variables. Concerning the solution strategy, we find an advantage of Picard iterations compared to monolithic Newton iterations

    Benchmark calculations with code SWIFT to check the numercial accuracy by modelling the groundwater flow in a fractured permeable medium HYDROCOIN, level 1, case 1

    No full text
    SIGLEAvailable from Berlin Technische Univ. (DE). Inst. fuer Kerntechnik / FIZ - Fachinformationszzentrum Karlsruhe / TIB - Technische InformationsbibliothekDEGerman
    corecore