55 research outputs found

    Magma Pressure-Temperature-Time Paths During Mafic Explosive Eruptions

    Get PDF
    We have constrained syneruptive pressure-temperature-time (P-T-t) paths of mafic magmas using a combination of short-timescale cooling and decompression chronometers. Recent work has shown that the thermal histories of crystals in the last few seconds to hours of eruption can be constrained using concentration gradients of MgO inside olivine-hosted melt inclusions, produced in response to syneruptive cooling and crystallization of olivine on the inclusion walls. We have applied this technique to the study of melt inclusions erupted by arc and ocean island volcanoes, including the 1974 subplinian eruption of Fuego volcano; the 1977 fire-fountain eruption of Seguam volcano; and three eruptions of Kilauea volcano (episode 1 of the 1959 Kilauea Iki fire-fountain eruption, the 1500 CE vigorous fire-fountain eruption, and the 1650 CE subplinian eruption). Of the eruptions studied so far, melt inclusions from the 1959 Kilauea Iki eruption record the highest syneruptive cooling rates (3–11°C/s) and the shortest cooling durations (4–19 s), while inclusions from the 1974 Fuego eruption record the slowest cooling rates (0.1–1.7°C/s) and longest cooling durations (21–368 s). The high cooling rates inferred for the Kilauea Iki and Seguam fire fountain eruptions are consistent with air quenching over tens of seconds during and after fragmentation and eruption. Melt inclusions sampled from the interiors of small (∼6 cm diameter) volcanic bombs at Fuego are found to have cooled more slowly on average than inclusions sampled from ash (with particle diameters < 2 mm) during the same eruption, as expected based on conductive cooling models. We find evidence for a systematic relationship between cooling rates and decompression rates of magmas, in which rapidly ascending gas-bearing magmas experience slower cooling during ascent and eruption than slowly ascending magmas. Our magma P-T-t constraints for the Kilauea Iki eruption are in broad agreement with isentropic models that show that the dominant driver of cooling in the conduit is adiabatic expansion of a vapor phase; however, at Fuego and Seguam, our results suggest a significant role for latent heat production and/or open-system degassing (both of which violate assumptions required for isentropic ascent). We thereby caution against the application of isentropic conduit models to magmas containing relatively high initial water concentrations (e.g., arc magmas containing ∼4 wt% water). We note that several processes that have been inferred to occur in volcanic conduits such as magma stalling, magma mingling, open- and closed-system degassing, vapor fluxing, and vapor accumulation (in foam layers or as slugs of gas) are associated with different implied vapor volume fractions during syneruptive ascent. Given the sensitivity of magma P-T-t paths to vapor volume fraction, the syneruptive thermometer presented here may be a means of identifying these processes during the seconds to hours preceding the eruption of mafic magmas

    Slab-derived devolatilization fluids oxidized by subducted metasedimentary rocks

    Get PDF
    Metamorphic devolatilization of subducted slabs generates aqueous fluids that ascend into the mantle wedge, driving the partial melting that produces arc magmas. These magmas have oxygen fugacities some 10–1,000 times higher than magmas generated at mid-ocean ridges. Whether this oxidized magmatic character is imparted by slab fluids or is acquired during ascent and interaction with the surrounding mantle or crust is debated. Here we study the petrology of metasedimentary rocks from two Tertiary Aegean subduction complexes in combination with reactive transport modelling to investigate the oxidative potential of the sedimentary rocks that cover slabs. We find that the metasedimentary rocks preserve evidence for fluid-mediated redox reactions and could be highly oxidized. Furthermore, the modelling demonstrates that layers of these oxidized rocks less than about 200 m thick have the capacity to oxidize the ascending slab dehydration flux via redox reactions that remove H2, CH4 and/or H2S from the fluids. These fluids can then oxidize the overlying mantle wedge at rates comparable to arc magma generation rates, primarily via reactions involving sulfur species. Oxidized metasedimentary rocks need not generate large amounts of fluid themselves but could instead oxidize slab dehydration fluids ascending through them. Proposed Phanerozoic increases in arc magma oxygen fugacity may reflect the recycling of oxidative weathering products following Neoproterozoic–Palaeozoic marine and atmospheric oxygenation

    Predation and the Maintenance of Color Polymorphism in a Habitat Specialist Squamate

    Get PDF
    Multiple studies have addressed the mechanisms maintaining polymorphism within a population. However, several examples exist where species inhabiting diverse habitats exhibit local population-specific polymorphism. Numerous explanations have been proposed for the maintenance of geographic variation in color patterns. For example, spatial variation in patterns of selection or limited gene flow can cause entire populations to become fixed for a single morph, resulting in separate populations of the same species exhibiting separate and distinct color morphs. The mottled rock rattlesnake (Crotalus lepidus lepidus) is a montane species that exhibits among-population color polymorphism that correlates with substrate color. Habitat substrate in the eastern part of its range is composed primarily of light colored limestone and snakes have light dorsal coloration, whereas in the western region the substrate is primarily dark and snakes exhibit dark dorsal coloration. We hypothesized that predation on high contrast color and blotched patterns maintain these distinct color morphs. To test this we performed a predation experiment in the wild by deploying model snakes at 12 sites evenly distributed within each of the two regions where the different morphs are found. We employed a 2×2 factorial design that included two color and two blotched treatments. Our results showed that models contrasting with substrate coloration suffered significantly more avian attacks relative to models mimicking substrates. Predation attempts on blotched models were similar in each substrate type. These results support the hypothesis that color pattern is maintained by selective predation

    Tigers of Sundarbans in India: Is the Population a Separate Conservation Unit?

    Get PDF
    The Sundarbans tiger inhabits a unique mangrove habitat and are morphologically distinct from the recognized tiger subspecies in terms of skull morphometrics and body size. Thus, there is an urgent need to assess their ecological and genetic distinctiveness and determine if Sundarbans tigers should be defined and managed as separate conservation unit. We utilized nine microsatellites and 3 kb from four mitochondrial DNA (mtDNA) genes to estimate genetic variability, population structure, demographic parameters and visualize historic and contemporary connectivity among tiger populations from Sundarbans and mainland India. We also evaluated the traits that determine exchangeability or adaptive differences among tiger populations. Data from both markers suggest that Sundarbans tiger is not a separate tiger subspecies and should be regarded as Bengal tiger (P. t. tigris) subspecies. Maximum likelihood phylogenetic analyses of the mtDNA data revealed reciprocal monophyly. Genetic differentiation was found stronger for mtDNA than nuclear DNA. Microsatellite markers indicated low genetic variation in Sundarbans tigers (He= 0.58) as compared to other mainland populations, such as northern and Peninsular (Hebetween 0.67- 0.70). Molecular data supports migration between mainland and Sundarbans populations until very recent times. We attribute this reduction in gene flow to accelerated fragmentation and habitat alteration in the landscape over the past few centuries. Demographic analyses suggest that Sundarbans tigers have diverged recently from peninsular tiger population within last 2000 years. Sundarbans tigers are the most divergent group of Bengal tigers, and ecologically non-exchangeable with other tiger populations, and thus should be managed as a separate "evolutionarily significant unit" (ESU) following the adaptive evolutionary conservation (AEC) concept.Wildlife Institute of India, Dehra Dun (India)

    A Critical Assessment of the High Cycle Bending Fatigue Behavior of Boron-modified Ti-6Al-4V

    Get PDF
    Boron-modified Ti-6Al-4V alloys have shown increased performance in mechanical properties over unmodified alloys and are currently of interest for use in turbine engine applications. These alloys offer up to 40% increase in ultimate tensile strength, up to 30% increase in stiffness, and favorable damage characteristics while maintaining a ductility greater than 10%. These attractive properties are attributed to small additions of boron that refine the microstructure and form strong and stiff TiB whiskers. Previous research has found that these modified alloys compare favorably in fatigue. Samples machined from a powder-metallurgy forging with nominal composition Ti-6Al-4V-1B, were tested in fully-reversed bending at room temperature using a vibration based step test method to determine the 106 fatigue strength. This method simulates fatigue failure modes for high speed turbomachinery more accurately and produces high-cycle fatigue results much faster than traditional tensile testing methods. Results were compared with data generated in a similar fashion for Ti-6Al-4V, as well as traditional methods. Additionally, failure mode and damage characteristics were identified using fractographic analysis. The fatigue strengths at 106 cycles compared poorly in comparison to both tensile and bending data for Ti-6Al-4V. This poor performance was attributed to inclusions of foreign material that were smaller than the theoretical maximum powder dimension. Fatigue damage characteristics were found to be consistent with previous research, with the most severe damage modes having little influence from the TiB whiskers
    corecore