4 research outputs found

    Software, risks, and liabilities: ongoing and emergent issues in 3D bioprinting

    No full text
    The growing use of software in biomedicine has enlarged the capacities of researchers and clinicians. This, one might expect, would enhance the precision and safety of biomedicine. However, it has been recognized that software can bring about new risks to the field of medicine and medical devices, requiring at least some degree of caution from the different players responsible for technology governance and risk management. This phenomenon is focused on in this paper, from the viewpoint of 3D bioprinting. Bioprinting is the production of bioactive structures in a layer-by-layer deposition of cells, with the use of devices called bioprinters. The latter can only function by receiving instructions from software. This paper focuses on some software-supported techniques that are key for bioprinting. It shows that a growing range of software packages has been used in bioprinting, a trend that is greatly fostered by open source software. In this evolution, the clinical potentialities of bioprinting come closer to their realization. At the same time, however, uncertainties emerge, related to issues such as data protection, use of biological samples, and others. The growing use of open source software complexifies the scenario, because it leads to a multiplication of actors directly or indirectly involved in the technology’s development, making it difficult to trace liabilities and damages. As no national regulation has been produced to tackle such uncertainties, they have been (provisionally and precariously) addressed in the licenses of software packages. In the years to come, as clinical products eventually spring from bioprinting research, more robust governance schemes will have to emerge in which risks and liabilities are dealt with more carefully by different players. Moreover, regulations will have to address the practice of combining different software packages in the same bioprinting process, as well as the growing globalization of bioprinting research and commercial exploration
    corecore