53 research outputs found

    Hindcast and validation of Hurricane Ike (2008) waves, forerunner, and storm surge: HINDCAST AND VALIDATION OF HURRICANE IKE

    Get PDF
    [1] Hurricane Ike (2008) made landfall near Galveston, Texas, as a moderate intensity storm. Its large wind field in conjunction with the Louisiana‐Texas coastline's broad shelf and large scale concave geometry generated waves and surge that impacted over 1000 km of coastline. Ike's complex and varied wave and surge response physics included: the capture of surge by the protruding Mississippi River Delta; the strong influence of wave radiation stress gradients on the Delta adjacent to the shelf break; the development of strong wind driven shore‐parallel currents and the associated geostrophic setup; the forced early rise of water in coastal bays and lakes facilitating inland surge penetration; the propagation of a free wave along the southern Texas shelf; shore‐normal peak wind‐driven surge; and resonant and reflected long waves across a wide continental shelf. Preexisting and rapidly deployed instrumentation provided the most comprehensive hurricane response data of any previous hurricane. More than 94 wave parameter time histories, 523 water level time histories, and 206 high water marks were collected throughout the Gulf in deep water, along the nearshore, and up to 65 km inland. Ike's highly varied physics were simulated using SWAN + ADCIRC, a tightly coupled wave and circulation model, on SL18TX33, a new unstructured mesh of the Gulf of Mexico, Caribbean Sea, and western Atlantic Ocean with high resolution of the Gulf's coastal floodplain from Alabama to the Texas‐Mexico border. A comprehensive validation was made of the model's ability to capture the varied physics in the system

    Hurricane Gustav (2008) Waves and Storm Surge: Hindcast, Synoptic Analysis, and Validation in Southern Louisiana

    Get PDF
    Hurricane Gustav (2008) made landfall in southern Louisiana on 1 September 2008 with its eye never closer than 75 km to New Orleans, but its waves and storm surge threatened to flood the city. Easterly tropical-storm-strength winds impacted the region east of the Mississippi River for 12-15 h, allowing for early surge to develop up to 3.5 m there and enter the river and the city's navigation canals. During landfall, winds shifted from easterly to southerly, resulting in late surge development and propagation over more than 70 km of marshes on the river's west bank, over more than 40 km of Caernarvon marsh on the east bank, and into Lake Pontchartrain to the north. Wind waves with estimated significant heights of 15 m developed in the deep Gulf of Mexico but were reduced in size once they reached the continental shelf. The barrier islands further dissipated the waves, and locally generated seas existed behind these effective breaking zones. The hardening and innovative deployment of gauges since Hurricane Katrina (2005) resulted in a wealth of measured data for Gustav. A total of 39 wind wave time histories, 362 water level time histories, and 82 high water marks were available to describe the event. Computational models-including a structured-mesh deepwater wave model (WAM) and a nearshore steady-state wave (STWAVE) model, as well as an unstructured-mesh "simulating waves nearshore'' (SWAN) wave model and an advanced circulation (ADCIRC) model-resolve the region with unprecedented levels of detail, with an unstructured mesh spacing of 100-200 m in the wave-breaking zones and 20-50 m in the small-scale channels. Data-assimilated winds were applied using NOAA's Hurricane Research Division Wind Analysis System (H*Wind) and Interactive Objective Kinematic Analysis (IOKA) procedures. Wave and surge computations from these models are validated comprehensively at the measurement locations ranging from the deep Gulf of Mexico and along the coast to the rivers and floodplains of southern Louisiana and are described and quantified within the context of the evolution of the storm

    Nonlinear wave interaction in coastal and open seas -- deterministic and stochastic theory

    Get PDF
    We review the theory of wave interaction in finite and infinite depth. Both of these strands of water-wave research begin with the deterministic governing equations for water waves, from which simplified equations can be derived to model situations of interest, such as the mild slope and modified mild slope equations, the Zakharov equation, or the nonlinear Schr\"odinger equation. These deterministic equations yield accompanying stochastic equations for averaged quantities of the sea-state, like the spectrum or bispectrum. We discuss several of these in depth, touching on recent results about the stability of open ocean spectra to inhomogeneous disturbances, as well as new stochastic equations for the nearshore

    Analytical and computational modelling for wave energy systems:the example of oscillating wave surge converters

    Get PDF
    This is an Open Access Article. It is published by Springer under the Creative Commons Attribution 4.0 International Licence (CC BY). Full details of this licence are available at: http://creativecommons.org/licenses/by/4.0/The development of new wave energy converters has shed light on a number of unanswered questions in fluid mechanics, but has also identified a number of new issues of importance for their future deployment. The main concerns relevant to the practical use of wave energy converters are sustainabiliy, survivability, and maintainability. And of course, it is also necessary to maximize the capture per unit area of the structure as well as to minimize the cost. In this review, we consider some of the questions related to the topics of sustainability, survivability, and maintenance access, with respect to sea conditions, for generic wave energy converters with an emphasis on the oscillating wave surge converter (OWSC). New analytical models that have been developed are a topic of particular discussion. It is also shown how existing numerical models have been pushed to their limits to provide answers to open questions relating to the operation and characteristics of wave energy converters

    A prediction model for stationary, short-crested waves in shallow water with ambient currents

    No full text
    A numerical model for the hindcasting of waves in shallow-water (HISWA) is described and comparisons are made between observations and model results in a realistic field situation. The model is based on a Eulerian presentation of the spectral action balance of the waves rather than on the more conventional (at least in coastal engineering) Lagrangian presentation. Wave propagation is correspondingly computed on a grid rather than along rays. The model accounts for refractive propagation of short-crested waves over arbitrary bottom topography and current fields. The effects of wave growth and dissipation due to wind generation, bottom dissipation and wave breaking (in deep and shallow water) are represented as source terms in the action balance equation. The computational efficiency of the model is enhanced by two simplifications of the basic balance equation. The first one is the removal of time as an independent variable to obtain a stationary model. This is justified by the relatively short travel time of waves in coastal regions. The second simplification is the parameterization of the basic balance equation in terms of a mean frequency and a frequency-integrated action density, both as function of the spectral wave direction. The discrete spectral representation of wave directionality is thus retained. An untuned version of HlSWA has been tested in a closed branch of the Rhine estuary where measurements with buoys and a wave gauge are available. In this situation, where wave breaking and shortcrestedness dominate, rms-errors in the significant wave height and mean wave period are about 10 and 13 % respectively of the observed values
    corecore