227 research outputs found
ac Stark shift and multiphoton-like resonances in low-frequency driven optical lattices
We suggest that Bose-Einstein condensates in optical lattices subjected to ac
forcing with a smooth envelope may provide detailed experimental access to
multiphoton-like transitions between ac-Stark-shifted Bloch bands. Such
transitions correspond to resonances described theoretically by avoided
quasienergy crossings. We show that the width of such anticrossings can be
inferred from measurements involving asymmetric pulses. We also introduce a
pulse tracking strategy for locating the particular driving amplitudes for
which resonances occur. Our numerical calculations refer to a currently
existing experimental set-up [Haller et al., PRL 104, 200403 (2010)].Comment: 5 pages, 6 figure
Supression of magnetic subbands in semiconductor superlattices driven by a laser field
The effect of strong laser radiation on magnetic subbands in semiconductor
superlattices is investigated. Due to the presence of a magnetic field
perpendicular to the growth direction, non-linear effects such as band
supression and electron localization become relevant at relatively lower
intensities and for any polarization perpendicular to the magnetic field.
Electron quasienergies and density of states are calculated in the
Kramers-Henneberger approximation, whose validity is discussed. The conditions
under which collapse of magnetic subbands and quenching of N-photon emission or
absorption processes occur are discussed. We conclude that at laser frequencies
close to cyclotronic frequency and intensities typical of c.w. lasers, magnetic
subbands become flat, magnetotunneling is inhibited and multiphotonic processes
dominate optical absorption.Comment: 4 pages RevTex, 2 figure
Avoided level crossing spectroscopy with dressed matter waves
We devise a method for probing resonances of macroscopic matter waves in
shaken optical lattices by monitoring their response to slow parameter changes,
and show that such resonances can be disabled by particular choices of the
driving amplitude. The theoretical analysis of this scheme reveals far-reaching
analogies between dressed atoms and time-periodically forced matter waves.Comment: 4 pages, 3 figure
Bogoliubov speed of sound for a dilute Bose-Einstein condensate in a 3d optical lattice
We point out that the velocity of propagation of sound wavepackets in a Bose-Einstein condensate filling a three-dimensional cubic optical lattice undergoes a maximum with increasing lattice depth. For a realistic choice of parameters, the maximum sound velocity in a lattice condensate can exceed the sound velocity in a homogeneous condensate with the same average density by 30%. The maximum falls into the superfluid regime, and should be observable under currently achievable laboratory conditions
Superfluid-insulator transition in a periodically driven optical lattice
We demonstrate that the transition from a superfluid to a Mott insulator in
the Bose-Hubbard model can be induced by an oscillating force through an
effective renormalization of the tunneling matrix element. The mechanism
involves adiabatic following of Floquet states, and can be tested
experimentally with Bose-Einstein condensates in periodically driven optical
lattices. Its extension from small to very large systems yields nontrivial
information on the condensate dynamics.Comment: 4 pages, 4 figures, RevTe
Theory of Coherent Time-dependent Transport in One-dimensional Multiband Semiconductor Superlattices
We present an analytical study of one-dimensional semiconductor superlattices
in external electric fields, which may be time-dependent. A number of general
results for the (quasi)energies and eigenstates are derived. An equation of
motion for the density matrix is obtained for a two-band model, and the
properties of the solutions are analyzed. An expression for the current is
obtained. Finally, Zener-tunneling in a two-band tight-binding model is
considered. The present work gives the background and an extension of the
theoretical framework underlying our recent Letter [J. Rotvig {\it et al.},
Phys. Rev. Lett. {\bf 74}, 1831 (1995)], where a set of numerical simulations
were presented.Comment: 15 pages, Revtex 3.0, uses epsf, 2 ps figures attache
Dressed matter waves
We suggest to view ultracold atoms in a time-periodically shifted optical
lattice as a "dressed matter wave", analogous to a dressed atom in an
electromagnetic field. A possible effect lending support to this concept is a
transition of ultracold bosonic atoms from a superfluid to a Mott-insulating
state in response to appropriate "dressing" achieved through time-periodic
lattice modulation. In order to observe this effect in a laboratory experiment,
one has to identify conditions allowing for effectively adiabatic motion of a
many-body Floquet state.Comment: 9 pages, 4 figures, to be published in: J. Phys.: Conference Serie
Perturbation theory for plasmonic eigenvalues
We develop a perturbative approach for calculating, within the quasistatic
approximation, the shift of surface resonances in response to a deformation of
a dielectric volume. Our strategy is based on the conversion of the homogeneous
system for the potential which determines the plasmonic eigenvalues into an
inhomogeneous system for the potential's derivative with respect to the
deformation strength, and on the exploitation of the corresponding
compatibility condition. The resulting general expression for the first-order
shift is verified for two explicitly solvable cases, and for a realistic
example of a deformed nanosphere. It can be used for scanning the huge
parameter space of possible shape fluctuations with only quite small
computational effort
Second-order calculation of the local density of states above a nanostructured surface
We have numerically implemented a perturbation series for the scattered
electromagnetic fields above rough surfaces, due to Greffet, allowing us to
evaluate the local density of states to second order in the surface profile
function. We present typical results for thermal near fields of surfaces with
regular nanostructures, investigating the relative magnitude of the
contributions appearing in successive orders. The method is then employed for
estimating the resolution limit of an idealized Near-Field Scanning Thermal
Microscope (NSThM).Comment: 10 pages, 7 figure
- …