147 research outputs found
Endothelial ether lipids link the vasculature to blood pressure, behavior, and neurodegeneration
Vascular disease contributes to neurodegeneration, which is associated with decreased blood pressure in older humans. Plasmalogens, ether phospholipids produced by peroxisomes, are decreased in Alzheimer's disease, Parkinson's disease, and other neurodegenerative disorders. However, the mechanistic links between ether phospholipids, blood pressure, and neurodegeneration are not fully understood. Here, we show that endothelium-derived ether phospholipids affect blood pressure, behavior, and neurodegeneration in mice. In young adult mice, inducible endothelial-specific disruption of PexRAP, a peroxisomal enzyme required for ether lipid synthesis, unexpectedly decreased circulating plasmalogens. PexRAP endothelial knockout (PEKO) mice responded normally to hindlimb ischemia but had lower blood pressure and increased plasma renin activity. In PEKO as compared with control mice, tyrosine hydroxylase was decreased in the locus coeruleus, which maintains blood pressure and arousal. PEKO mice moved less, slept more, and had impaired attention to and recall of environmental events as well as mild spatial memory deficits. In PEKO hippocampus, gliosis was increased, and a plasmalogen associated with memory was decreased. Despite lower blood pressure, PEKO mice had generally normal homotopic functional connectivity by optical neuroimaging of the cerebral cortex. Decreased glycogen synthase kinase-3 phosphorylation, a marker of neurodegeneration, was detected in PEKO cerebral cortex. In a co-culture system, PexRAP knockdown in brain endothelial cells decreased glycogen synthase kinase-3 phosphorylation in co-cultured astrocytes that was rescued by incubation with the ether lipid alkylglycerol. Taken together, our findings suggest that endothelium-derived ether lipids mediate several biological processes and may also confer neuroprotection in mice
Comparing Skill Acquisition Under Varying Onsets of Differential Reinforcement: A Preliminary Analysis
The purpose of the current study was to evaluate the effect of implementing differential reinforcement at different times relative to the onset of teaching new skills to learners with autism spectrum disorder. Specifically, we first determined the most efficient differential reinforcement arrangement for each participant. Using the most efficient arrangement, we evaluated if differential reinforcement from the immediate onset, early onset, or late onset is the most efficient for learners to acquire a new skill. Three children diagnosed with autism spectrum disorder who have a history of receiving intervention based on the principles of applied behavior analysis participated in this study. The immediate onset of differential reinforcement resulted in the most efficient instruction in 6 of 7 comparisons. The results are discussed in light of previous studies and suggestions for future research are provided
The association between physical activity and neck and low back pain: a systematic review
The effect of physical activity on neck and low back pain is still controversial. No systematic review has been conducted on the association between daily physical activity and neck and low back pain. The objective of this study was to evaluate the association between physical activity and the incidence/prevalence of neck and low back pain. Publications were systematically searched from 1980 to June 2009 in several databases. The following key words were used: neck pain, back pain, physical activity, leisure time activity, daily activity, everyday activity, lifestyle activity, sedentary, and physical inactivity. A hand search of relevant journals was also carried out. Relevant studies were retrieved and assessed for methodological quality by two independent reviewers. The strength of the evidence was based on methodological quality and consistency of the results. Seventeen studies were included in this review, of which 13 were rated as high-quality studies. Of high-quality studies, there was limited evidence for no association between physical activity and neck pain in workers and strong evidence for no association in school children. Conflicting evidence was found for the association between physical activity and low back pain in both general population and school children. Literature with respect to the effect of physical activity on neck and low back pain was too heterogeneous and more research is needed before any final conclusion can be reached
Tau association with synaptic vesicles causes presynaptic dysfunction
Tau is implicated in more than 20 neurodegenerative diseases, including Alzheimer's disease. Under pathological conditions, Tau dissociates from axonal microtubules and missorts to pre- and postsynaptic terminals. Patients suffer from early synaptic dysfunction prior to Tau aggregate formation, but the underlying mechanism is unclear. Here we show that pathogenic Tau binds to synaptic vesicles via its N-terminal domain and interferes with presynaptic functions, including synaptic vesicle mobility and release rate, lowering neurotransmission in fly and rat neurons. Pathological Tau mutants lacking the vesicle binding domain still localize to the presynaptic compartment but do not impair synaptic function in fly neurons. Moreover, an exogenously applied membrane-permeable peptide that competes for Tau-vesicle binding suppresses Tau-induced synaptic toxicity in rat neurons. Our work uncovers a presynaptic role of Tau that may be part of the early pathology in various Tauopathies and could be exploited therapeutically.status: publishe
Transcriptomic Analyses of Sexual Dimorphism of the Zebrafish Liver and the Effect of Sex Hormones
10.1371/journal.pone.0053562PLoS ONE81
Biomarkers in Natural Fish Populations Indicate Adverse Biological Effects of Offshore Oil Production
Despite the growing awareness of the necessity of a sustainable development, the global economy continues to depend largely on the consumption of non-renewable energy resources. One such energy resource is fossil oil extracted from the seabed at offshore oil platforms. This type of oil production causes continuous environmental pollution from drilling waste, discharge of large amounts of produced water, and accidental spills.Samples from natural populations of haddock (Melanogrammus aeglefinus) and Atlantic cod (Gadus morhua) in two North Sea areas with extensive oil production were investigated. Exposure to and uptake of polycyclic aromatic hydrocarbons (PAHs) were demonstrated, and biomarker analyses revealed adverse biological effects, including induction of biotransformation enzymes, oxidative stress, altered fatty acid composition, and genotoxicity. Genotoxicity was reflected by a hepatic DNA adduct pattern typical for exposure to a mixture of PAHs. Control material was collected from a North Sea area without oil production and from remote Icelandic waters. The difference between the two control areas indicates significant background pollution in the North Sea.It is most remarkable to obtain biomarker responses in natural fish populations in the open sea that are similar to the biomarker responses in fish from highly polluted areas close to a point source. Risk assessment of various threats to the marine fish populations in the North Sea, such as overfishing, global warming, and eutrophication, should also take into account the ecologically relevant impact of offshore oil production
- …