35 research outputs found

    Evaluation of miCRovascular rarefaction in vascUlar Cognitive Impairment and heArt faiLure (CRUCIAL): Study protocol for an observational study

    Get PDF
    INTRODUCTION: Microvascular rarefaction, the functional reduction in perfused microvessels and structural reduction of microvascular density, seems to be an important mechanism in the pathophysiology of small blood vessel related disorders including vascular cognitive impairment (VCI) due to cerebral small vessel disease and heart failure with preserved ejection fraction (HFpEF). Both diseases share common risk factors including hypertension, diabetes mellitus, obesity, and ageing; in turn, these co-morbidities are associated with microvascular rarefaction. Our consortium aims to investigate novel non-invasive tools to quantify microvascular health and rarefaction in both organs, as well as surrogate biomarkers for cerebral and/or cardiac rarefaction (via sublingual capillary health, vascular density of the retina, and RNA content of circulating extracellular vesicles), and to determine whether microvascular density relates to disease severity. METHODS/DESIGN: The clinical research program of CRUCIAL consists of four observational cohort studies. We aim to recruit 75 VCI patients, 60 HFpEF patients, 60 patients with severe aortic stenosis (AS) undergoing surgical aortic valve replacement as a pressure overload HFpEF model, and 200 elderly participants with mixed comorbidities to serve as controls. Data collected will include medical history, physical examination, cognitive testing, advanced brain and cardiac MRI, ECG, echocardiography, sublingual capillary health, optical coherence tomography angiography (OCTa), extracellular vesicles RNA analysis and myocardial remodelling-related serum biomarkers. The AS cohort undergoing surgery will also have myocardial biopsy for histological microvascular assessment. DISCUSSION: CRUCIAL will examine the pathophysiological role of microvascular rarefaction in VCI and HFpEF using advanced brain and cardiac MRI techniques. Furthermore, we will investigate surrogate biomarkers for non-invasive, faster, easier, and cheaper assessment of microvascular density since these are more likely to be disseminated into widespread clinical practice. If microvascular rarefaction is an early marker of developing small vessel diseases, then measuring rarefaction may allow pre-clinical diagnosis, with implications for screening, risk stratification, and prevention. Further knowledge of the relevance of microvascular rarefaction and its underlying mechanisms may provide new avenues for research and therapeutic targets

    Persistent microvascular obstruction-like lesion after ventricular tachycardia ablation detected by novel dark-blood late gadolinium enhancement

    No full text
    Microvascular obstruction is a transient phenomenon of "no reflow" after myocardial infarction or radiofrequency ablation, diagnosed using late gadolinium enhancement cardiac MRI. We present a patient with a persistent microvascular obstruction-like lesion following radiofrequency ventricular tachycardia ablation post-myocardial infarction, which was best characterized by a novel dark-blood late gadolinium enhancement technique

    A Boolean Dilemma:True or False Aneurysm?

    Get PDF
    A feared complication of acute myocardial infarction is the formation of a cardiac pseudoaneurysm. We report a case of a gargantuan, arrhythmogenic left-ventricular pseudoaneurysm with contradictory morphological characteristics. The integrative use of high-resolution 3-dimensional magnetic resonance imaging and computed tomography proved essential for the diagnostic discrimination and successful therapeutic intervention. (Level of Difficulty: Advanced.)

    Late Gadolinium Enhancement Cardiac Magnetic Resonance Imaging:From Basic Concepts to Emerging Methods

    Get PDF
    BACKGROUND:  Late gadolinium enhancement (LGE) is a widely used cardiac magnetic resonance imaging (MRI) technique to diagnose a broad range of ischemic and non-ischemic cardiomyopathies. Since its development and validation against histology already more than two decades ago, the clinical utility of LGE and its span of applications have increased considerably. METHODS:  In this review we will present the basic concepts of LGE imaging and its diagnostic and prognostic value, elaborate on recent developments and emerging methods, and finally discuss future prospects. RESULTS:  Continuous developments in 3 D imaging methods, motion correction techniques, water/fat-separated imaging, dark-blood methods, and scar quantification improved the performance and further expanded the clinical utility of LGE imaging. CONCLUSION:  LGE imaging is the current noninvasive reference standard for the assessment of myocardial viability. Improvements in spatial resolution, scar-to-blood contrast, and water/fat-separated imaging further strengthened its position. KEY POINTS:   · LGE MRI is the reference standard for the noninvasive assessment of myocardial viability. · LGE MRI is used to diagnose a broad range of non-ischemic cardiomyopathies in everyday clinical practice.. · Improvements in spatial resolution and scar-to-blood contrast further strengthened its position. · Continuous developments improve its performance and further expand its clinical utility. CITATION FORMAT: · Holtackers RJ, Emrich T, Botnar RM et al. Late Gadolinium Enhancement Cardiac Magnetic Resonance Imaging: From Basic Concepts to Emerging Methods. Fortschr Röntgenstr 2022; DOI: 10.1055/a-1718-4355
    corecore