2,319 research outputs found
The level of BMP4 signaling is critical for the regulation of distinct T-box gene expression domains and growth along the dorso-ventral axis of the optic cup
BACKGROUND: Polarised gene expression is thought to lead to the graded distribution of signaling molecules providing a patterning mechanism across the embryonic eye. Bone morphogenetic protein 4 (Bmp4) is expressed in the dorsal optic vesicle as it transforms into the optic cup. Bmp4 deletions in human and mouse result in failure of eye development, but little attempt has been made to investigate mammalian targets of BMP4 signaling. In chick, retroviral gene overexpression studies indicate that Bmp4 activates the dorsally expressed Tbx5 gene, which represses ventrally expressed cVax. It is not known whether the Tbx5 related genes, Tbx2 and Tbx3, are BMP4 targets in the mammalian retina and whether BMP4 acts at a distance from its site of expression. Although it is established that Drosophila Dpp (homologue of vertebrate Bmp4) acts as a morphogen, there is little evidence that BMP4 gradients are interpreted to create domains of BMP4 target gene expression in the mouse. RESULTS: Our data show that the level of BMP4 signaling is critical for the regulation of distinct Tbx2, Tbx3, Tbx5 and Vax2 gene expression domains along the dorso-ventral axis of the mouse optic cup. BMP4 signaling gradients were manipulated in whole mouse embryo cultures during optic cup development, by implantation of beads soaked in BMP4, or the BMP antagonist Noggin, to provide a local signaling source. Tbx2, Tbx3 and Tbx5, showed a differential response to alterations in the level of BMP4 along the entire dorso-ventral axis of the optic cup, suggesting that BMP4 acts across a distance. Increased levels of BMP4 caused expansion of Tbx2 and Tbx3, but not Tbx5, into the ventral retina and repression of the ventral marker Vax2. Conversely, Noggin abolished Tbx5 expression but only shifted Tbx2 expression dorsally. Increased levels of BMP4 signaling caused decreased proliferation, reduced retinal volume and altered the shape of the optic cup. CONCLUSION: Our findings suggest the existence of a dorsal-high, ventral-low BMP4 signaling gradient across which distinct domains of Tbx2, Tbx3, Tbx5 and Vax2 transcription factor gene expression are set up. Furthermore we show that the correct level of BMP4 signaling is critical for normal growth of the mammalian embryonic eye
Development and application of optical fibre strain and pressure sensors for in-flight measurements
Fibre optic based sensors are becoming increasingly viable as replacements for traditional
flight test sensors. Here we present laboratory, wind tunnel and flight test results of fibre
Bragg gratings (FBG) used to measure surface strain and an extrinsic fibre
Fabry–Perot
interferometric (EFFPI) sensor used to measure unsteady pressure. The calibrated full
scale resolution and bandwidth of the FBG and EFFPI sensors were shown to be 0.29% at
2.5 kHz up to 600 με and 0.15% at up to 10 kHz respectively up to 400 Pa. The wind tunnel
tests, completed on a 30% scale model, allowed the EFFPI sensor to be developed before
incorporation with the FBG system into a Bulldog aerobatic light aircraft. The aircraft was
modified and certified based on Certification Standards 23 (CS-23) and flight tested with
steady and dynamic manoeuvres. Aerobatic dynamic manoeuvres were performed in flight
including a spin over a g-range −1g to +4g and demonstrated both the FBG and the EFFPI
instruments to have sufficient resolution to analyse the wing strain and fuselage unsteady
pressure characteristics. The steady manoeuvres from the EFFPI sensor matched the wind
tunnel data to within experimental error while comparisons of the flight test and wind tunnel
EFFPI results with a Kulite pressure sensor showed significant discrepancies between the two
sets of data, greater than experimental error. This issue is discussed further in the paper
Spatial analysis of plague in California: niche modeling predictions of the current distribution and potential response to climate change
<p>Abstract</p> <p>Background</p> <p>Plague, caused by the bacterium <it>Yersinia pestis</it>, is a public and wildlife health concern in California and the western United States. This study explores the spatial characteristics of positive plague samples in California and tests Maxent, a machine-learning method that can be used to develop niche-based models from presence-only data, for mapping the potential distribution of plague foci. Maxent models were constructed using geocoded seroprevalence data from surveillance of California ground squirrels (<it>Spermophilus beecheyi</it>) as case points and Worldclim bioclimatic data as predictor variables, and compared and validated using area under the receiver operating curve (AUC) statistics. Additionally, model results were compared to locations of positive and negative coyote (<it>Canis latrans</it>) samples, in order to determine the correlation between Maxent model predictions and areas of plague risk as determined via wild carnivore surveillance.</p> <p>Results</p> <p>Models of plague activity in California ground squirrels, based on recent climate conditions, accurately identified case locations (AUC of 0.913 to 0.948) and were significantly correlated with coyote samples. The final models were used to identify potential plague risk areas based on an ensemble of six future climate scenarios. These models suggest that by 2050, climate conditions may reduce plague risk in the southern parts of California and increase risk along the northern coast and Sierras.</p> <p>Conclusion</p> <p>Because different modeling approaches can yield substantially different results, care should be taken when interpreting future model predictions. Nonetheless, niche modeling can be a useful tool for exploring and mapping the potential response of plague activity to climate change. The final models in this study were used to identify potential plague risk areas based on an ensemble of six future climate scenarios, which can help public managers decide where to allocate surveillance resources. In addition, Maxent model results were significantly correlated with coyote samples, indicating that carnivore surveillance programs will continue to be important for tracking the response of plague to future climate conditions.</p
Antigen depot is not required for alum adjuvanticity
Alum adjuvants have been in continuous clinical use for more than 80 yr. While the prevailing theory has been that depot formation and the associated slow release of antigen and/or inflammation are responsible for alum enhancement of antigen presentation and subsequent T- and B-cell responses, this has never been formally proven. To examine antigen persistence, we used the chimeric fluorescent protein EαGFP, which allows assessment of antigen presentation in situ, using the Y-Ae antibody. We demonstrate that alum and/or CpG adjuvants induced similar uptake of antigen, and in all cases, GFP signal did not persist beyond 24 h in draining lymph node antigen-presenting cells. Antigen presentation was first detectable on B cells within 6–12 h of antigen administration, followed by conventional dendritic cells (DCs) at 12–24 h, then finally plasmacytoid DCs at 48 h or later. Again, alum and/or CpG adjuvants did not have an effect on the magnitude or sequence of this response; furthermore, they induced similar antigen-specific T-cell activation in vivo. Notably, removal of the injection site and associated alum depot, as early as 2 h after administration, had no appreciable effect on antigen-specific T- and B-cell responses. This study clearly rules out a role for depot formation in alum adjuvant activity
Quantitative PCR-based genome size estimation of the astigmatid mites Sarcoptes scabiei, Psoroptes ovis and Dermatophagoides pteronyssinus
Background: The lack of genomic data available for mites limits our understanding of their biology. Evolving high-throughput sequencing technologies promise to deliver rapid advances in this area, however, estimates of genome size are initially required to ensure sufficient coverage. Methods. Quantitative real-time PCR was used to estimate the genome sizes of the burrowing ectoparasitic mite Sarcoptes scabiei, the non-burrowing ectoparasitic mite Psoroptes ovis, and the free-living house dust mite Dermatophagoides pteronyssinus. Additionally, the chromosome number of S. scabiei was determined by chromosomal spreads of embryonic cells derived from single eggs. Results: S. scabiei cells were shown to contain 17 or 18 small (< 2 M) chromosomes, suggesting an XO sex-determination mechanism. The average estimated genome sizes of S. scabiei and P. ovis were 96 ( 7) Mb and 86 ( 2) Mb respectively, among the smallest arthropod genomes reported to date. The D. pteronyssinus genome was estimated to be larger than its parasitic counterparts, at 151 Mb in female mites and 218 Mb in male mites. Conclusions: This data provides a starting point for understanding the genetic organisation and evolution of these astigmatid mites, informing future sequencing projects. A comparitive genomic approach including these three closely related mites is likely to reveal key insights on mite biology, parasitic adaptations and immune evasion
Recommended from our members
Eddy current testing program with scanning probe head having parallel and normal sensing coils
An eddy current testing system consists of a multi-sensor probe, computer and a special expansion card and software for data collection and analysis. The probe incorporates an excitation coil, and sensor coils; at least one sensor coil is a lateral current-normal coil and at least one is a current perturbation coil
Jetstream 31 National Flying Laboratory: Lift and Drag Measurement and Modelling
Lift and drag flight test data is presented from the National Flying Laboratory Centre, Jetstream 31 aircraft. The aircraft has been modified as a flying classroom for completing flight test training courses, for engineering degree accreditation. The straight and level flight test data is compared to data from 10% and 17% scale wind tunnel models, a Reynolds Averaged Navier Stokes steady-state computational fluid dynamics model and an empirical model. Estimated standard errors in the flight test data are ±2.4%±2.4% in lift coefficient, ±2.7%±2.7% in drag coefficient. The flight test data also shows the aircraft to have a maximum lift to drag ratio of 10.5 at Mach 0.32, a zero lift drag coefficient of 0.0376 and an induced drag correction factor of 0.0607. When comparing the characteristics from the other models, the best overall comparison with the flight test data, in terms of lift coefficient, was with the empirical model. For the drag comparisons, all the models under predicted levels of drag by up to 43% when compared to the flight test data, with the best overall match between the flight test data and the 10% scale wind tunnel model. These discrepancies were attributed to various factors including zero lift drag Reynolds number effects, omission of a propeller system and surface excrescences on the models, as well as surface finish differences
Recommended from our members
Large-scale discovery of enhancers from human heart tissue.
Development and function of the human heart depend on the dynamic control of tissue-specific gene expression by distant-acting transcriptional enhancers. To generate an accurate genome-wide map of human heart enhancers, we used an epigenomic enhancer discovery approach and identified ∼6,200 candidate enhancer sequences directly from fetal and adult human heart tissue. Consistent with their predicted function, these elements were markedly enriched near genes implicated in heart development, function and disease. To further validate their in vivo enhancer activity, we tested 65 of these human sequences in a transgenic mouse enhancer assay and observed that 43 (66%) drove reproducible reporter gene expression in the heart. These results support the discovery of a genome-wide set of noncoding sequences highly enriched in human heart enhancers that is likely to facilitate downstream studies of the role of enhancers in development and pathological conditions of the heart
Prospective Study in a Porcine Model of Sarcoptes scabiei Indicates the Association of Th2 and Th17 Pathways with the Clinical Severity of Scabies
BackgroundUnderstanding of scabies immunopathology has been hampered by the inability to undertake longitudinal studies in humans. Pigs are a useful animal model for scabies, and show clinical and immunologic changes similar to those in humans. Crusted scabies can be readily established in pigs by treatment with the glucocorticoid dexamethasone (Dex).Methodology/ Principal FindingsProspective study of 24 pigs in four groups: a) Scabies+/Dex+, b) Scabies+/Dex-, c) Scabies-/Dex+ and d) Scabies-/Dex-. Clinical symptoms were monitored. Histological profiling and transcriptional analysis of skin biopsies was undertaken to compare changes in cell infiltrates and representative cytokines. A range of clinical responses to Sarcoptes scabiei were observed in Dex treated and non-immunosuppressed pigs. An association was confirmed between disease severity and transcription of the Th2 cytokines IL-4 and IL-13, and up-regulation of the Th17 cytokines IL-17 and IL-23 in pigs with crusted scabies. Immunohistochemistry revealed marked infiltration of lymphocytes and mast cells, and strong staining for IL-17.Conclusions/ SignificanceWhile an allergic Th2 type response to scabies has been previously described, these results suggest that IL-17 related pathways may also contribute to immunopathology of crusted scabies. This may lead to new strategies to protect vulnerable subjects from contracting recurrent crusted scabies
- …