193 research outputs found
Crew-Aided Autonomous Navigation Project
Manual capability to perform star/planet-limb sightings provides a cheap, simple, and robust backup navigation source for exploration missions independent from the ground. Sextant sightings from spacecraft were first exercised in Gemini and flew as the loss-of-communications backup for all Apollo missions. This study seeks to procure and characterize error sources of navigation-grade sextants for feasibility of taking star and planetary limb sightings from inside a spacecraft. A series of similar studies was performed in the early/mid-1960s in preparation for Apollo missions, and one goal of this study is to modernize and update those findings. This technique has the potential to deliver significant risk mitigation, validation, and backup to more complex low-TRL automated systems under development involving cameras
TDRSS Augmentation for Launch and Ascent High Speed Navigation Filter
An investigation was performed to evaluate the feasibility and possible advantages of augmenting the High Speed Trajectory Determination (HSTD) ground navigation filter with measurements from the Tracking & Data Relay Satellite System (TDRSS) constellation. The proposed communications system strategy for Constellation uses TDRSS rather than ground S-band, so the capability of replacing the S-band navigation capability with TDRSS was considered. HSTD simulations were performed with combinations of S-band, C-band, and TDRSS measurements. Several assumptions are made with regard to measurement biases and signal noise characteristics to produce first-look level accuracies. Preliminary results show that solutions using TDRSS instead of S-band have similar or improved performance from the view of filter covariance and may be a feasible alternative. These results also show that TDRSS tracking alone gives poorer observations and resulting performance Operational and other constraints to the use of TDRSS in a high-speed ground navigation filter are not addressed
Crew-Aided Autonomous Navigation
A sextant provides manual capability to perform star/planet-limb sightings and offers a cheap, simple, robust backup navigation source for exploration missions independent from the ground. Sextant sightings from spacecraft were first exercised in Gemini and flew as the lost-communication backup for all Apollo missions. This study characterized error sources of navigation-grade sextants for feasibility of taking star and planetary limb sightings from inside a spacecraft. A series of similar studies was performed in the early/mid-1960s in preparation for Apollo missions. This study modernized and updated those findings in addition to showing feasibility using Linear Covariance analysis techniques. The human eyeball is a remarkable piece of optical equipment and provides many advantages over camera-based systems, including dynamic range and detail resolution. This technique utilizes those advantages and provides important autonomy to the crew in the event of lost communication with the ground. It can also provide confidence and verification of low-TRL automated onboard systems. The technique is extremely flexible and is not dependent on any particular vehicle type. The investigation involved procuring navigation-grade sextants and characterizing their performance under a variety of conditions encountered in exploration missions. The JSC optical sensor lab and Orion mockup were the primary testing locations. For the accuracy assessment, a group of test subjects took sextant readings on calibrated targets while instrument/operator precision was measured. The study demonstrated repeatability of star/planet-limb sightings with bias and standard deviation around 10 arcseconds, then used high-fidelity simulations to verify those accuracy levels met the needs for targeting mid-course maneuvers in preparation for Earth reen
Performance Analysis of Apollo Navigational Starter Routine
The focus of this project is to recreate and analyze the effectiveness of the original Apollo Starter Routine (ASR) which was used to generate the state vector of the Apollo spacecraft based on a series of radiometric observations. The original Apollo navigation software is unavailable in a modern programming language and the original coding has not been preserved. This necessitates its recreation using the original software documentation. Space Shuttle navigation software does not typically use the ASR or an algorithm like it since the Shuttle s state vector is easily deduced from GPS information or other sources. However, this tactic will be ineffective when trying to determine the state vector of a craft approaching, departing or in orbit around the Moon since the GPS network faces the surface of the Earth, not outer space. The recreation of the ASR from the original documentation is therefore vital as a simulation baseline for the navigation software under development for the Constellation program. The algorithms that make up the ASR will be extracted from the original documentation and adapted for and then implemented in a modern programming language; the majority of it will be coded in Matlab. The ASR s effectiveness will then be tested using simulated tracking data. The ability of the ASR to handle realistically noisy data and the accuracy with which it generates state vectors were analyzed. The ASR proved to be robust enough to process data with range and angle noise as large as 10,000 meters and 10(exp -6) radians together and 300,000 meters and 5x10(exp -4) radians separately at Lunar distances. The ASR was able to handle marginally more noise at distances closer to the Earth where the angle noise was less significant. The ASR is capable of effectively processing 40-80 data points gathered at a rate of one per 20 seconds at close Earth orbit and up to 28-40 data points gathered at a rate of one per minute at distant Earth orbit and Lunar orbit
Orion Absolute Navigation System Progress and Challenges
The Orion spacecraft is being designed as NASA's next-generation exploration vehicle for crewed missions beyond Low-Earth Orbit. The navigation system for the Orion spacecraft is being designed in a Multi-Organizational Design Environment (MODE) team including contractor and NASA personnel. The system uses an Extended Kalman Filter to process measurements and determine the state. The design of the navigation system has undergone several iterations and modifications since its inception, and continues as a work-in-progress. This paper seeks to benchmark the current state of the design and some of the rationale and analysis behind it. There are specific challenges to address when preparing a timely and effective design for the Exploration Flight Test (EFT-1), while still looking ahead and providing software extensibility for future exploration missions. The primary measurements in a Near-Earth or Mid-Earth environment consist of GPS pseudorange and deltarange, but for future explorations missions the use of star-tracker and optical navigation sources need to be considered. Discussions are presented for state size and composition, processing techniques, and consider states. A presentation is given for the processing technique using the computationally stable and robust UDU formulation with an Agee-Turner Rank-One update. This allows for computational savings when dealing with many parameters which are modeled as slowly varying Gauss-Markov processes. Preliminary analysis shows up to a 50% reduction in computation versus a more traditional formulation. Several state elements are discussed and evaluated, including position, velocity, attitude, clock bias/drift, and GPS measurement biases in addition to bias, scale factor, misalignment, and non-orthogonalities of the accelerometers and gyroscopes. Another consideration is the initialization of the EKF in various scenarios. Scenarios such as single-event upset, ground command, pad alignment, cold start are discussed as are strategies for whole and partial state updates as well as covariance considerations. Strategies are given for dealing with latent measurements and high-rate propagation using multi-rate architecture. The details of the rate groups and the data ow between the elements is discussed and evaluated
Orion Exploration Flight Test 1 (EFT-1) Best Estimated Trajectory Development
The Orion Exploration Flight Test 1 (EFT-1) mission successfully flew on Dec 5, 2014 atop a Delta IV Heavy launch vehicle. The goal of Orions maiden flight was to stress the system by placing an uncrewed vehicle on a high-energy trajectory replicating conditions similar to those that would be experienced when returning from an asteroid or a lunar mission. The Orion navigation team combined all trajectory data from the mission into a Best Estimated Trajectory (BET) product. There were significant challenges in data reconstruction and many lessons were learned for future missions. The team used an estimation filter incorporating radar tracking, onboard sensors (Global Positioning System and Inertial Measurement Unit), and day-of-flight weather balloons to evaluate the true trajectory flown by Orion. Data was published for the entire Orion EFT-1 flight, plus objects jettisoned during entry such as the Forward Bay Cover. The BET customers include approximately 20 disciplines within Orion who will use the information for evaluating vehicle performance and influencing future design decisions
Tuning and Robustness Analysis for the Orion Absolute Navigation System
The Orion Multi-Purpose Crew Vehicle (MPCV) is currently under development as NASA's next-generation spacecraft for exploration missions beyond Low Earth Orbit. The MPCV is set to perform an orbital test flight, termed Exploration Flight Test 1 (EFT-1), some time in late 2014. The navigation system for the Orion spacecraft is being designed in a Multi-Organizational Design Environment (MODE) team including contractor and NASA personnel. The system uses an Extended Kalman Filter to process measurements and determine the state. The design of the navigation system has undergone several iterations and modifications since its inception, and continues as a work-in-progress. This paper seeks to show the efforts made to-date in tuning the filter for the EFT-1 mission and instilling appropriate robustness into the system to meet the requirements of manned space ight. Filter performance is affected by many factors: data rates, sensor measurement errors, tuning, and others. This paper focuses mainly on the error characterization and tuning portion. Traditional efforts at tuning a navigation filter have centered around the observation/measurement noise and Gaussian process noise of the Extended Kalman Filter. While the Orion MODE team must certainly address those factors, the team is also looking at residual edit thresholds and measurement underweighting as tuning tools. Tuning analysis is presented with open loop Monte-Carlo simulation results showing statistical errors bounded by the 3-sigma filter uncertainty covariance. The Orion filter design uses 24 Exponentially Correlated Random Variable (ECRV) parameters to estimate the accel/gyro misalignment and nonorthogonality. By design, the time constant and noise terms of these ECRV parameters were set to manufacturer specifications and not used as tuning parameters. They are included in the filter as a more analytically correct method of modeling uncertainties than ad-hoc tuning of the process noise. Tuning is explored for the powered-flight ascent phase, where measurements are scarce and unmodelled vehicle accelerations dominate. On orbit, there are important trade-off cases between process and measurement noise. On entry, there are considerations about trading performance accuracy for robustness. Process Noise is divided into powered flight and coasting ight and can be adjusted for each phase and mode of the Orion EFT-1 mission. Measurement noise is used for the integrated velocity measurements during pad alignment. It is also used for Global Positioning System (GPS) pseudorange and delta- range measurements during the rest of the flight. The robustness effort has been focused on maintaining filter convergence and performance in the presence of unmodeled error sources. These include unmodeled forces on the vehicle and uncorrected errors on the sensor measurements. Orion uses a single-frequency, non-keyed GPS receiver, so the effects due to signal distortion in Earth's ionosphere and troposphere are present in the raw measurements. Results are presented showing the efforts to compensate for these errors as well as characterize the residual effect for measurement noise tuning. Another robustness tool in use is tuning the residual edit thresholds. The trade-off between noise tuning and edit thresholds is explored in the context of robustness to errors in dynamics models and sensor measurements. Measurement underweighting is also presented as a method of additional robustness when processing highly accurate measurements in the presence of large filter uncertainties
From the comforts of print to the possibilities of digital media: leading the way in teaching political leadership in a faculty of arts
Since it inception, Deakin University has been committed to the delivery of innovative, high quality course materials to its off campus students. Until recently these packages were predominantly print based, although augmented with audio-visual materials delivered in cassette format. Ironically, with the advent of information and communications technologies (ICT), and some select computer assisted learning and multimedia packages, there was an overall decline in the use of audio and video as important means of enhancing learning. Like many other universities, Deakin has moved to a strong, centralised approach to the provision of its digital and online corporate technology environment. With investment in these technologies has come a renewed interest in the ways in which text and audio-visual materials in digital form can enhance students\u27 learning experiences. Moreover, the ways in which a variety of digital media supported by online developments can create new models and approaches to teaching/learning has figured prominently. This paper presents a case study of how this challenge has been taken up in a unit, Political Leadership, in the Faculty of Arts. The academic teacher\u27s intentions in moving to a completely digital approach are examined along with students\u27 experiences of learning in the subject. Issues are considered from the experience. <br /
Benefits of Operational Consideration into the Guidance, Navigation, and Control Design of Spacecraft
The following paper points out historical examples where operational consideration into the GN&C design could have helped avoid operational complexity, reduce costs, ensure the ability for a GN&C system to be able to adapt to failures, and in some cases might have helped save mission objectives. A costly repeat of mistakes could befall a program if previous operational lessons, especially from operators of vehicles with similar GN&C systems, are not considered during the GN&C design phase of spacecraft. The information gained from operational consideration during the design can lead to improvements of the design, allow less ground support during operations, and prevent repetition of previous mistakes. However, this benefit can only occur if spacecraft operators adequately capture lessons learned that would improve future designs for operations and those who are designing spacecraft incorporate inputs from those that have previously operated similar GN&C systems
Initial Considerations for Navigation and Flight Dynamics of a Crewed Near-Earth Object Mission
A crewed mission to a Near-Earth Object (NEO) was recently identified as a NASA Space Policy goal and priority. In support of this goal, a study was conducted to identify the initial considerations for performing the navigation and flight dynamics tasks of this mission class. Although missions to a NEO are not new, the unique factors involved in human spaceflight present challenges that warrant special examination. During the cruise phase of the mission, one of the most challenging factors is the noisy acceleration environment associated with a crewed vehicle. Additionally, the presence of a human crew necessitates a timely return trip, which may need to be expedited in an emergency situation where the mission is aborted. Tracking, navigation, and targeting results are shown for sample human-class trajectories to NEOs. Additionally, the benefit of in-situ navigation beacons on robotic precursor missions is presented. This mission class will require a longer duration flight than Apollo and, unlike previous human missions, there will likely be limited communication and tracking availability. This will necessitate the use of more onboard navigation and targeting capabilities. Finally, the rendezvous and proximity operations near an asteroid will be unlike anything previously attempted in a crewed spaceflight. The unknown gravitational environment and physical surface properties of the NEO may cause the rendezvous to behave differently than expected. Symbiosis of the human pilot and onboard navigation/targeting are presented which give additional robustness to unforeseen perturbations
- …