1,268 research outputs found
Hall resistance in the hopping regime, a "Hall Insulator"?
The Hall conductivity and resistivity of strongly localized electrons at low
temperatures and at small magnetic fields are obtained. It is found that the
results depend on whether the conductivity or the resistivity tensors are
averaged to obtain the macroscopic Hall resistivity. In the second case the
Hall resistivity always {\it diverges} exponentially as the temperature tends
to zero. But when the Hall resistivity is derived from the averaged
conductivity, the resulting temperature dependence is sensitive to the disorder
configuration. Then the Hall resistivity may approach a constant value as . This is the Hall insulating behavior. It is argued that for strictly dc
conditions, the transport quantity that should be averaged is the resistivity.Comment: Late
Nonequilibrium orbital magnetization of strongly localized electrons
The magnetic response of strongly localized electrons to a time-dependent
vector potential is considered. The orbital magnetic moment of the system, away
from steady-state conditions, is obtained. The expression involves the
tunneling and phonon-assisted hopping currents between localized states. The
frequency and temperature dependence of the orbital magnetization is analyzed
as function of the admittances connecting localized levels. It is shown that
quantum interference of the localized wave functions contributes to the moment
a term which follows adiabatically the time-dependent perturbation.Comment: RevTeX 3.
Effective Actions, Boundaries and Precision Calculations of Casimir Energies
We perform the matching required to compute the leading effective boundary
contribution to the QED lagrangian in the presence of a conducting surface,
once the electron is integrated out. Our result resolves a confusion in the
literature concerning the interpretation of the leading such correction to the
Casimir energy. It also provides a useful theoretical laboratory for
brane-world calculations in which kinetic terms are generated on the brane,
since a lot is known about QED near boundaries.Comment: 5 pages. revtex; Added paragraphs describing finite-conductivity
effects and effects due to curvatur
The ground state of a general electron-phonon Hamiltonian is a spin singlet
The many-body ground state of a very general class of electron-phonon
Hamiltonians is proven to contain a spin singlet (for an even number of
electrons on a finite lattice). The phonons interact with the electronic system
in two different ways---there is an interaction with the local electronic
charge and there is a functional dependence of the electronic hopping
Hamiltonian on the phonon coordinates. The phonon potential energy may include
anharmonic terms, and the electron-phonon couplings and the hopping matrix
elements may be nonlinear functions of the phonon coordinates. If the hopping
Hamiltonian is assumed to have no phonon coordinate dependence, then the ground
state is also shown to be unique, implying that there are no ground-state level
crossings, and that the ground-state energy is an analytic function of the
parameters in the Hamiltonian. In particular, in a finite system any
self-trapping transition is a smooth crossover not accompanied by a
nonanalytical change in the ground state. The spin-singlet theorem applies to
the Su-Schrieffer-Heeger model and both the spin-singlet and uniqueness
theorems apply to the Holstein and attractive Hubbard models as special cases.
These results hold in all dimensions --- even on a general graph without
periodic lattice structure.Comment: 25 pages, no figures, plainte
Chiral Lagrangians
An overview of the field of Chiral Lagrangians is given. This includes Chiral
Perturbation Theory and resummations to extend it to higher energies,
applications to the muon anomalous magnetic moment,
and others.Comment: Invited talk at the XX International Symposium on Lepton and Photon
Interactions at High Energies 23rd-28th July 2001, Rome Italy, 15 pages, uses
ws-p10x7.cls Changes: 2 references added, numbers in g-2 hadronic changed
slightl
The Self-Trapping Line of the Holstein Molecular Crystal Model in One Dimension
The ground state of the Holstein molecular crystal model in one dimension is
studied using the Global-Local variational method, analyzing in particular the
total energy, kinetic energy, phonon energy, and interaction energy over a
broad region of the polaron parameter space. Through the application of
objective criteria, a unique curve is identified that simply, accurately, and
robustly locates the self-trapping transition separating small polaron and
large polaron behavior
Surface Phase Transitions Induced by Electron Mediated Adatom-Adatom Interaction
We propose that the indirect adatom-adatom interaction mediated by the
conduction electrons of a metallic surface is responsible for the
structural phase transitions
observed in Sn/Ge (111) and Pb/Ge (111). When the indirect interaction
overwhelms the local stress field imposed by the substrate registry, the system
suffers a phonon instability, resulting in a structural phase transition in the
adlayer. Our theory is capable of explaining all the salient features of the
transitions observed in
Sn/Ge (111) and Pb/Ge (111), and is in principle applicable to a wide class of
systems whose surfaces are metallic before the transition.Comment: 4 pages, 5 figure
Pion and Sigma Polarizabilities and Radiative Transitions
Fermilab E781 plans measurements of gamma-Sigma and -pion
interactions using a 600 GeV beam of Sigmas and pions, and a virtual photon
target. Pion polarizabilities and radiative transitions will be measured in
this experiment. The former can test a precise prediction of chiral symmetry;
the latter for a_1(1260) ----> pi + gamma is important for understanding the
polarizability. The experiment also measures polarizabilities and radiative
transitions for Sigma hyperons. The polarizabilities can test predictions of
baryon chiral perturbation theory. The radiative transitions to the
Sigma*(1385) provide a measure of the magnetic moment of the s-quark. Previous
experimental and theoretical results for gamma-pi and gamma-Sigma interactions
are given. The E781 experiment is described.Comment: 13 pages text (tex), Tel Aviv U. Preprint TAUP 2204-94, uses
Springer-Verlag TEX macro package lecproc.cmm (appended at end of tex file,
following \byebye), which requires extracting lecproc.cmm and putting this
file in your directory in addition to the tex file (mmcd.tex) before tex
processing. lecproc.cmm should be used following instructions and guidelines
available from Springer-Verlag. Submitted to the Proceedings of Workshop on
Chiral Dynamics, Massachusetts Institute of Technology, July 1994, Eds. A.
Bernstein, B. Holstein. Replaced Oct. 4 to add TAUP preprint number. Replaced
Oct. 12 to correct Pb target thickness from 1.3% interaction to 0.3
Ground State and Excitations of Disordered Boson Systems
After an introduction to the dirty bosons problem, we present a gaussian
theory for the ground state and excitations. This approach is physically
equivalent to the Bogoliubov approximation. We find that ODLRO can be destroyed
with sufficient disorder. The density of states and localization of the
elementary excitations are discussed. (To appear in JLTP Proceedings of the
Conference on Condensed Bose Systems at the University of Minnesota, 1993.)Comment: 13 pages. (postscript file because of the figures inserted in the
text.
- …