21 research outputs found
Quantum Gravitational Corrections to the Nonrelativistic Scattering Potential of Two Masses
We treat general relativity as an effective field theory, obtaining the full
nonanalytic component of the scattering matrix potential to one-loop order. The
lowest order vertex rules for the resulting effective field theory are
presented and the one-loop diagrams which yield the leading nonrelativistic
post-Newtonian and quantum corrections to the gravitational scattering
amplitude to second order in G are calculated in detail. The Fourier
transformed amplitudes yield a nonrelativistic potential and our result is
discussed in relation to previous calculations. The definition of a potential
is discussed as well and we show how the ambiguity of the potential under
coordinate changes is resolved.Comment: 27 pages, 17 figure
Giant magnetothermopower of magnon-assisted transport in ferromagnetic tunnel junctions
We present a theoretical description of the thermopower due to
magnon-assisted tunneling in a mesoscopic tunnel junction between two
ferromagnetic metals. The thermopower is generated in the course of thermal
equilibration between two baths of magnons, mediated by electrons. For a
junction between two ferromagnets with antiparallel polarizations, the ability
of magnon-assisted tunneling to create thermopower depends on the
difference between the size of the majority and
minority band Fermi surfaces and it is proportional to a temperature dependent
factor where is the magnon Debye
energy. The latter factor reflects the fractional change in the net
magnetization of the reservoirs due to thermal magnons at temperature
(Bloch's law). In contrast, the contribution of magnon-assisted
tunneling to the thermopower of a junction with parallel polarizations is
negligible. As the relative polarizations of ferromagnetic layers can be
manipulated by an external magnetic field, a large difference results in a magnetothermopower effect. This
magnetothermopower effect becomes giant in the extreme case of a junction
between two half-metallic ferromagnets, .Comment: 9 pages, 4 eps figure
Energy and decay width of the pi-K atom
The energy and decay width of the pi-K atom are evaluated in the framework of
the quasipotential-constraint theory approach. The main electromagnetic and
isospin symmetry breaking corrections to the lowest-order formulas for the
energy shift from the Coulomb binding energy and for the decay width are
calculated. They are estimated to be of the order of a few per cent. We display
formulas to extract the strong interaction S-wave pi-K scattering lengths from
future experimental data concerning the pi-K atom.Comment: 37 pages, 5 figures, uses Axodra
Green function techniques in the treatment of quantum transport at the molecular scale
The theoretical investigation of charge (and spin) transport at nanometer
length scales requires the use of advanced and powerful techniques able to deal
with the dynamical properties of the relevant physical systems, to explicitly
include out-of-equilibrium situations typical for electrical/heat transport as
well as to take into account interaction effects in a systematic way.
Equilibrium Green function techniques and their extension to non-equilibrium
situations via the Keldysh formalism build one of the pillars of current
state-of-the-art approaches to quantum transport which have been implemented in
both model Hamiltonian formulations and first-principle methodologies. We offer
a tutorial overview of the applications of Green functions to deal with some
fundamental aspects of charge transport at the nanoscale, mainly focusing on
applications to model Hamiltonian formulations.Comment: Tutorial review, LaTeX, 129 pages, 41 figures, 300 references,
submitted to Springer series "Lecture Notes in Physics
Phonon driven transport in amorphous semiconductors: Transition probabilities
Inspired by Holstein's work on small polaron hopping, the evolution equations
of localized states and extended states in presence of atomic vibrations are
derived for an amorphous semiconductor. The transition probabilities are
obtained for four types of transitions: from one localized state to another
localized state, from a localized state to an extended state, from an extended
state to a localized state, and from one extended state to another extended
state. At a temperature not too low, any process involving localized state is
activated. The computed mobility of the transitions between localized states
agrees with the observed `hopping mobility'. We suggest that the observed
`drift mobility' originates from the transitions from localized states to
extended states. Analysis of the transition probability from an extended state
to a localized state suggests that there exists a short-lifetime belt of
extended states inside conduction band or valence band. It agrees with the fact
that photoluminescence lifetime decreases with frequency in a-Si/SiO
quantum well while photoluminescence lifetime is not sensitive to frequency in
c-Si/SiO structure.Comment: 41 pages, 3 figures, submitted to Phys. Rev.