2,120 research outputs found

    The Laying on of Hands

    Get PDF
    Miss SARAH sat with her legs in an undignified spread, straddling the porch bench, while balancing her teacup on one knee. Miss Rose occupied the rocking chair, which was battered with wear, but still musical in its rhythmic motions..

    Adaptive Finite Element Methods with Inexact Solvers for the Nonlinear Poisson-Boltzmann Equation

    Full text link
    In this article we study adaptive finite element methods (AFEM) with inexact solvers for a class of semilinear elliptic interface problems. We are particularly interested in nonlinear problems with discontinuous diffusion coefficients, such as the nonlinear Poisson-Boltzmann equation and its regularizations. The algorithm we study consists of the standard SOLVE-ESTIMATE-MARK-REFINE procedure common to many adaptive finite element algorithms, but where the SOLVE step involves only a full solve on the coarsest level, and the remaining levels involve only single Newton updates to the previous approximate solution. We summarize a recently developed AFEM convergence theory for inexact solvers, and present a sequence of numerical experiments that give evidence that the theory does in fact predict the contraction properties of AFEM with inexact solvers. The various routines used are all designed to maintain a linear-time computational complexity.Comment: Submitted to DD20 Proceeding

    Introduction

    Get PDF

    Equivalence between various versions of the self-dual action of the Ashtekar formalism

    Full text link
    Different aspects of the self-dual (anti-self-dual) action of the Ashtekar canonical formalism are discussed. In particular, we study the equivalences and differences between the various versions of such an action. Our analysis may be useful for the development of an Ashtekar formalism in eight dimensions.Comment: 10 pages, Latex, minor correction

    Initial boundary value problems for Einstein's field equations and geometric uniqueness

    Get PDF
    While there exist now formulations of initial boundary value problems for Einstein's field equations which are well posed and preserve constraints and gauge conditions, the question of geometric uniqueness remains unresolved. For two different approaches we discuss how this difficulty arises under general assumptions. So far it is not known whether it can be overcome without imposing conditions on the geometry of the boundary. We point out a natural and important class of initial boundary value problems which may offer possibilities to arrive at a fully covariant formulation.Comment: 19 page

    Multigrid Preconditioner for Nonconforming Discretization of Elliptic Problems with Jump Coefficients

    Full text link
    In this paper, we present a multigrid preconditioner for solving the linear system arising from the piecewise linear nonconforming Crouzeix-Raviart discretization of second order elliptic problems with jump coefficients. The preconditioner uses the standard conforming subspaces as coarse spaces. Numerical tests show both robustness with respect to the jump in the coefficient and near-optimality with respect to the number of degrees of freedom.Comment: Submitted to DD20 Proceeding

    A model problem for conformal parameterizations of the Einstein constraint equations

    Full text link
    We investigate the possibility that the conformal and conformal thin sandwich (CTS) methods can be used to parameterize the set of solutions of the vacuum Einstein constraint equations. To this end we develop a model problem obtained by taking the quotient of certain symmetric data on conformally flat tori. Specializing the model problem to a three-parameter family of conformal data we observe a number of new phenomena for the conformal and CTS methods. Within this family, we obtain a general existence theorem so long as the mean curvature does not change sign. When the mean curvature changes sign, we find that for certain data solutions exist if and only if the transverse-traceless tensor is sufficiently small. When such solutions exist, there are generically more than one. Moreover, the theory for mean curvatures changing sign is shown to be extremely sensitive with respect to the value of a coupling constant in the Einstein constraint equations.Comment: 40 pages, 4 figure
    corecore