316 research outputs found

    Generation of theta activity (RSA) in the cingulate cortex of the rat

    Get PDF
    Unit activity recorded from the cingulate cortex during theta rhythm shows periodic trains of spikes which are phase-locked to the local theta field potential waves. These cortical theta units were also shown to be correlated with hippocampal theta units. These findings, along with the fact that theta field potentials show a phase reversal within the cingulate cortex, lead to the conclusion that this cortical area is a source of theta activity

    Electrical conductivity of the hippocampal CA1 layers and application to current-source-density analysis

    Get PDF
    The microstructure of the layers in the hippocampal CA1 area suggests that differences may exist between the electrical conductivities of these layers. In order to quantify these differences a sinusoidal current was applied to hippocampal slices in a bathing medium and potential differences were measured between pairs of neighbouring electrodes from an array. The maximum relative conductivity (100%) was found in the middle part of str. radiatum, with a gradual decrease towards the fissure (84%). There was also a gradual decrease towards the alveus (70%), but in str. pyramidale the relative conductivity was only 42%. No differences were observed between the laminar conductivities of normal hippocampal slices and slices generating spontaneous interictal bursts. These results were used to carry out a one-dimensional CSD analysis of field potentials evoked by Schaffer collateral stimulation. Despite the differences in conductivity, the homogeneous and the inhomogeneous CSD approximations did not lead to differences in the spatial distribution of sources and sinks and only gave some differences in the current density, especially at the pyramidal layer and its close environment

    A simple method for the construction of electrode arrays

    Get PDF
    A simple method is described for the construction of electrode arrays consisting of insulated metal wires (33 ΞΌm diameter) spaced at small, equal distances (0.1 mm). No specialized instrumentation and techniques are needed, as only simple mechanical tools are sufficient. The electrode arrays are used for field potential recording from in vitro brain slice preparations

    Volume conduction and EEG measurements within the brain: A quantitative approach to the influence of electrical spread on the linear relationship of activity measured at different locations

    Get PDF
    When recording referentially brain field potentials with several electrodes at relatively small tip separations, a linear relationship between the simultaneously recorded signals may arise solely as a result of volume conduction (electrical spread). A method is described to quantify the linear relationship due to electrical spread in a situation with independent neuronal sources.\ud \ud In rat under urethane anaesthesia, records were made during theta activity in the hippocampus with two electrodes against a reference with electrode tip separations between 0–3 mm. Frequency analysis of EEG epochs and computation of coherence were carried out.\ud \ud As an estimate of linear relationship between the recorded signals due to electrical spread the mean value of coherence (cohm) of a frequency band outside the range containing most power of theta rhythm was calculated.\ud \ud The results show a fairly constant decay of cohm at increasing electrode separation, reaching a value of 0.1 at a distance varying between 0.8-1.4 mm. This means that neurones at a distance of 0.4–0.7 mm from a recording electrode make a contribution of βˆ’25 dB to a recorded signal of 0 dB.\ud \ud The results of a simple model of volume conduction producing linear relationship between two recorded signals are in good agreement with the experimental results.\ud \ud The influence of linear relationship of the activity of neurones on volume conduction properties and on coherence is discussed

    Transverse tripolar spinal cord stimulation: Theoretical performance of a dual channel system

    Get PDF
    A new approach to spinal cord stimulation is presented, by which several serious problems of conventional methods can be solved. A transverse tripolar electrode with a dual-channel voltage stimulator is evaluated theoretically by means of a volume conductor model, combined with nerve fibre models. The simulations predict that a high degree of freedom in the control of activation of dorsal spinal pathways may be obtained with the described system. This implies an easier control of paraesthesia coverage of skin areas and the possibility to correct undesired paraesthesia patterns, caused by lead migration, tissue growth, or anatomical asymmetries, for example, without surgical intervention. It will also be possible to preferentially activate either dorsal column or dorsal root fibres, which has some important clinical advantages. Compared to conventional stimulation systems, the new system has a relatively high current drain

    Electrical safety in spinal cord stimulation: current density analysis by computer modeling

    Get PDF
    The possibility of tissue damage in spinal cord stimulation was investigated in a computer modeling study. A decrease of the electrode area in monopolar stimulation resulted in an increase of the current density at the electrode surface. When comparing the modeling results with experimental data from literature, it was concluded that even with a small electrode area (0.7 mm2) tissue damage in spinal cord stimulation is improbabl

    Electrode geometry and preferential stimulation of spinal nerve fibers having different orientations: a modeling study

    Get PDF
    In a computer modeling study of epidural spinal cord stimulation using a longitudinal array of electrode contacts, the effect of contact geometry and contact combination on the threshold voltages for stimulation of dorsal column (DC) fibers and dorsal root (DR) fibers was investigated. It was concluded that DC-fiber stimulation will be favoured when a tripolar combination and small contact length and spacing are used, while DR-fiber stimulation will be favoured when unipolar stimulation and large contact length are used

    Propagation velocity of epileptiform activity in the hippocampus

    Get PDF
    The propagation of epileptiform burst activity was investigated in the CA1 area of the in-vitro hippocampal slice preparation of the guinea pig. This activity was provoked by 0.1 mM 4-aminopyridine in the bathing medium and was recorded in the pyramidal layer with an array of eight electrodes. The delay between the first population spike of a burst recorded with different electrodes was calculated using the cross-correlation function. The propagation velocity was estimated from the delays and the electrode intervals. It was found that the velocity of spontaneous and evoked epileptiform bursts varies between 0.15 and 5 m/s and is not confined to the range of conduction velocities of the fibre systems in CA1 (0.3–0.55 and 1.0–1.8 m/s). Different velocities can be present in different parts of the CA1 area and the initiation of spontaneous bursts is not confined to the CA2–3 areas, but can also occur in CA1. Burst activity also propagated in a low calcium-high magnesium medium. Different mechanisms of propagation are discussed and it is argued that the propagation velocity due to ephaptic interaction may vary largely. It is concluded that epileptiform activity can be propagated not only by synaptic connections at or near the pyramidal layer, but also by way of electrical field effects of population spikes

    Triple leads with longitudinal guarded cathodes in spinal cord stimulation-effect of transversal lead separation

    Get PDF
    In spinal cord stimulation (SCS) clinical practice, longitudinal guarded cathode stimulation by a single lead, placed on the spinal cord midline provides the broadest parasthesia coverage. This study uses a triple lead longitudinal tripole with the center lead placed on the midline. The transversal spacing between the leads is varied to study its effect on the usage range (UR) and the recruited area (both depth and width) of dorsal colums activation

    A model of the electrical behaviour of myelinated sensory nerve fibres based on human data

    Get PDF
    Calculation of the response of human myelinated sensory nerve fibres to spinal cord stimulation initiated the development of a fibre model based on electro-physiological and morphometric data for human sensory nerve fibres. The model encompasses a mathematical description of the kinetics of the nodal membrane, and a non-linear fibre geometry. Fine tuning of only a few, not well-established parameters was performed by fitting the shape of a propagating action potential and its diameter-dependent propagation velocity. The quantitative behaviour of this model corresponds better to experimentally determined human fibre properties than other mammalian, non-human models do. Typical characteristics, such as the shape of the action potential, the propagation velocity and the strength-duration behaviour show a good fit with experimental data. The introduced diameter-dependent parameters did not result in a noticeable diameter dependency of action potential duration and refractory period. The presented model provides an improved tool to analyse the electrical behaviour of human myelinated sensory nerve fibres
    • …
    corecore