670 research outputs found
Characterization and Process Development for the MEBES I Electron Beam Lithography System
Characterization of a MEBES I electron beam lithography tool was done to investigate electron bear writing errors induced by electrical and mechanical interactions of the system. Process development of SAL6O3 a negatively working chemically amplified resist, which is required to provide a high sensitivity repeatable resist film, was also done
Firm productivity in the Western Balkans: the impact of European Union membership and access to finance.
This study examines the productivity performance of Balkan firms within and outside the European Union (EU), including the influence of loans. A multiple treatment model is used to compare the effects on productivity of membership and loans both separately and collectively, which in the case of loans allows a separate analysis of their influence on firms in non-member states. The use of conditional quantile regressions measures the effect on productivity of membership and loans separately as treatment variables. This provides an analysis of where the treatment influence is greatest across the distribution curve and identifies the significance of selected control variables on the outcome. In the full sample, the findings indicate that EU membership and loans have a positive effect on productivity, with membership being more important than loans. Outside the EU, firms in receipt of loans are more productive than those without. However, the significance of both membership and loans is restricted to the lower end of the productivity distribution curve. The manufacturing sample shows that EU membership has a significant positive effect across 70% of the deciles measured, whilst the influence of loans is restricted to the lower deciles, with rental capital (leasing) also positively significant in the lower four deciles. In the services sector, however, membership is significant up to 90% of the distribution, with loans at 60%
Nectar formation and floral nectary anatomy of Anigozanthos flavidus: a combined magnetic resonance imaging and spectroscopy study
Metabolic processes underlying the formation of floral nectar carbohydrates, especially the generation of the proportions of fructose, glucose, and sucrose, are important for understanding ecological plant–pollinator interactions. The ratio of sucrose-derived hexoses, fructose and glucose, in the floral nectar of Anigozanthos flavidus (Haemodoraceae) was observed to be different from 1:1, which cannot be explained by the simple action of invertases. Various NMR techniques were used to investigate how such an unbalanced ratio of the two nectar hexoses can be formed. High-resolution 13C NMR spectroscopy in solution was used to determine the proportion of carbohydrates in vascular bundles of excised inflorescences fed with 13C-labelled carbohydrates. These experiments verified that feeding did not affect the metabolic processes involved in nectar formation. In vivo magnetic resonance imaging (e.g. cyclic J cross-polarization) was used to detect carbohydrates in vascular bundles and 1H spin echo imaging non-invasively displayed the architecture of tepal nectaries and showed how they are connected to the vascular bundles. A model of the carbohydrate metabolism involved in forming A. flavidus floral nectar was established. Sucrose from the vascular bundles is not directly secreted into the lumen of the nectary but, either before or after invertase-catalysed hydrolyses, taken up by nectary cells and cycled at least partly through glycolysis, gluconeogenesis, and the pentose phosphate pathway. Secretion of the two hexoses in the cytosolic proportion could elegantly explain the observed fructose:glucose ratio of the nectar
Response Surface Modelling Utilizing Lithographic Process Simulation
A method of incorporating statistically designed fractional factorial experiments into lithographic process simulation software (PROL1TH/2) has been used to determine input factor interrelationships inherent within a lithographic process. Rotatable Box-Behnken designs with 3 centerpoints were utilized for the experiment. The response surface methodology (RSM) approach was used to analyze the influence of independent factors on a dependant response, and optimize each process. A method of steepest ascent was utilized to produce first-order models, which were verified by lack of fit testing. As optimum operating points were approached, a second-order model was fitted and analyzed. A series of experiments studying the effects of prebake, exposure, post-exposure bake, and development on critical dimension and profile in PROLITH/2 produced response surfaces relating each main factor effect as well as non-linear and interaction effects. Additionally, experiments were conducted to study effects of numerical aperture, coherence, feature size, defocus, and flare on aerial image contrast. Process optimization for the target response value as well as process latitude as it relates to all factors simultaneously was then possible through use of the response surface
Advanced atomic force microscopy techniques
Cataloged from PDF version of article.Although its conceptual approach is as simple as the technique used in record players already introduced in the 19th century, the invention of the atomic force microscope (AFM) in 1986 by Binnig, Quate, and Gerber was a milestone for nanotechnology. The scanning tunneling microscope (STM), introduced some years earlier, had already achieved atomic resolution, but is limited to conductive surfaces. Since its operational principle is based on the detection of the forces acting between tip and sample, this restriction does not exist for the AFM. Consequently, atomic force microscopy quickly became the standard tool for nanometer-scale imaging of all types of surfaces in all environments. True atomic resolution was first achieved in the 1990s. The most convincing results, however, were restricted to the so-called noncontact mode in vacuum for a long time, but recent technical developments overcame this limitation, and atomic-resolution imaging is now also a standard in liquids.
Beyond pushing the resolution limit to the picometer range, the invention of the AFM triggered the development of a growing number of new scanning probe methods and approaches, ranging from an expansion of the properties that can be mapped to the active manipulation of surfaces and small particles. Practically every month, reports on the growing capabilities of AFMs appear. Nearly every physical effect that influences the tip–sample interaction has been used to improve existing modes and to develop new ones. For example, many recently presented techniques include the excitation of higher cantilever oscillation modes; it is amazing in how many ways the shaking of a simple cantilever can improve our knowledge about the tip–sample interaction. Another direction is high-speed atomic force microscopy, which is one of the eminent challenges that need to be solved in order to allow the in situ observation of biological processes. Data acquisition times have already reached the millisecond range, enabling the visualization of the dynamic behavior of biological molecules and cells. Other recent accomplishments include imaging of organic molecules with unprecedented resolution, full three-dimensional mapping of surface force fields, and the imaging and discrimination of individual chemical bonds.
The development of advanced techniques is the focus of this Thematic Series, following the Thematic Series “Scanning probe microscopy and related techniques” edited by Ernst Meyer and the Thematic Series “Noncontact atomic force microscopy” edited by Udo Schwarz. The articles that are part of the series demonstrate that, despite its 25 years of history, the AFM is still far from reaching its limits, and today’s developments are far-reaching. As the number of research groups utilizing advanced atomic force microscopy techniques increases with each passing year, the technical improvements, data-acquisition approaches, analysis procedures, user friendliness, and application areas of the technique further diversify. With this Thematic Series, it is our intention to stimulate these improvements.
We thank all authors for contributing their excellent work to this series. Furthermore, we acknowledge all referees for their promptly provided reports keeping the publication times short and attractive for contributors. Finally, we are grateful to the open access policy of the Beilstein Journal of Nanotechnology providing the ground for unrestricted discussions on advanced atomic force microscopy techniques.
Thilo Glatzel, Hendrik Hölscher, Thomas Schimmel, Mehmet Z. Baykara, Udo D. Schwarz and Ricardo Garcia
December 201
Mass spectrometry-based ligand binding assays on adenosine A(1) and A(2A) receptors
Conventional methods to measure ligand-receptor binding parameters typically require radiolabeled ligands as probes. Despite the robustness of radioligand binding assays, they carry inherent disadvantages in terms of safety precautions, expensive synthesis, special lab requirements, and waste disposal. Mass spectrometry (MS) is a method that can selectively detect ligands without the need of a label. The sensitivity of MS equipment increases progressively, and currently, it is possible to detect low ligand quantities that are usually found in ligand binding assays. We developed a label-free MS ligand binding (MS binding) assay on the adenosine A(1) and A(2A) receptors (A(1)AR and A(2A)AR), which are well-characterized members of the class A G protein-coupled receptor (GPCR) family. Radioligand binding assays for both receptors are well established, and ample data is available to compare and evaluate the performance of an MS binding assay. 1,3-Dipropyl-8-cyclopentyl-xanthine (DPCPX) and 4-(2-((7-amino-2-(furan-2-yl)-[1,2,4]triazolo[1,5-a]-[1,3,5]triazin-5-yl)amino)ethyl)phenol (ZM-241,385) are high-affinity ligands selective for the A(1)AR and A(2A)AR, respectively. To proof the feasibility of MS binding on the A(1)AR and A(2A)AR, we first developed an MS detection method for unlabeled DPCPX and ZM-241,385. To serve as internal standards, both compounds were also deuterium-labeled. Subsequently, we investigated whether the two unlabeled compounds could substitute for their radiolabeled counterparts as marker ligands in binding experiments, including saturation, displacement, dissociation, and competition association assays. Furthermore, we investigated the accuracy of these assays if the use of internal standards was excluded. The results demonstrate the feasibility of the MS binding assay, even in the absence of a deuterium-labeled internal standard, and provide great promise for the further development of label-free assays based on MS for other GPCRs. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1007/s11302-015-9477-0) contains supplementary material, which is available to authorized users
Evaluation of nutrient intakes of pregnant and non-pregnant women
During pregnancy, women need to increase their energy intake and certain vitamins and minerals to ensure that both the mother and fetus remain healthy. Therefore, it is crucial that women-- both pregnant and those capable of becoming pregnant-- are properly nourished to provide a healthy environment for their child. The objective of this study was to determine if pregnant women’s dietary intakes meet their dietary reference intakes (DRIs) independent of supplementation and to determine if non-pregnant women of childbearing age have adequate intakes of key nutrients important for conception and pregnancy. Our study examined 15 pregnant and 15 non-pregnant women between the ages of 20 and 33 years recruited from the Urbana-Champaign area. Study participants completed the National Health and Nutrition Examination Survey (NHANES) Food Frequency Questionnaire (FFQ). FFQ data was then analyzed using Diet*Calc (2013, NCI) and Statistical Analysis System (SAS). Nutrient data was compared to the 2001 Dietary Reference Intake values. There were no differences in mean nutrient intakes between pregnant and non-pregnant women. Both pregnant and non-pregnant women exceeded the DRIs for vitamins A, B12, and C, riboflavin, and n-3 polyunsaturated fatty acids (PUFAs). Our findings indicate that both pregnant and non-pregnant women from the Champaign-Urbana area may benefit from dietary education and/or supplementation in order to prevent development of adverse health effects in the fetus.Ope
Retinal Morphometric Markers of Crystallized and Fluid Intelligence Among Adults With Overweight and Obesity
Objective: To investigate the relationship between retinal morphometric measures and intellectual abilities among adults with overweight and obesity.Methods: Adults between 25 and 45 years (N = 55, 38 females) with overweight or obesity (BMI ≥ 25.0 kg/m2) underwent an optical coherence tomography (OCT) scan to assess retinal nerve fiber layer (RNFL) volume, ganglion cell layer (GCL) volume, macular volume, and central foveal thickness. Dual-Energy X-ray absorptiometry was used to assess whole-body adiposity (% Fat). The Kaufman Brief Intelligence Test-2 was used to assess general intelligence (IQ), fluid, and crystallized intelligence. Hierarchical linear regression analyses were performed to examine relationships between adiposity and intelligence measures following adjustment of relevant demographic characteristics and degree of adiposity (i.e., % Fat).Results: Although initial bivariate correlations indicated that % Fat was inversely related to fluid intelligence, this relationship was mitigated by inclusion of other demographic factors, including age, sex, and education level. Regression analyses for primary outcomes revealed that RNFL was positively related to IQ and fluid intelligence. However, only GCL was positively related to crystallized intelligence.Conclusion: This work provides novel data linking specific retinal morphometric measures – assessed using OCT – to intellectual abilities among adults with overweight and obesity.Clinical Trial Registration:www.clinicaltrials.gov, identifier NCT02740439
- …