173 research outputs found

    International Experience of Mechanical Thrombectomy During the COVID-19 Pandemic: Insights from STAR and ENRG

    Get PDF
    Background: In response to the COVID-19 pandemic, many centers altered stroke triage protocols for the protection of their providers. However, the effect of workflow changes on stroke patients receiving mechanical thrombectomy (MT) has not been systematically studied. Methods: A prospective international study was launched at the initiation of the COVID-19 pandemic. All included centers participated in the Stroke Thrombectomy and Aneurysm Registry (STAR) and Endovascular Neurosurgery Research Group (ENRG). Data was collected during the peak months of the COVID-19 surge at each site. Collected data included patient and disease characteristics. A generalized linear model with logit link function was used to estimate the effect of general anesthesia (GA) on in-hospital mortality and discharge outcome controlling for confounders. Results: 458 patients and 28 centers were included from North America, South America, and Europe. Five centers were in high-COVID burden counties (HCC) in which 9/104 (8.7%) of patients were positive for COVID-19 compared with 4/354 (1.1%) in low-COVID burden counties (LCC) (P<0.001). 241 patients underwent pre-procedure GA. Compared with patients treated awake, GA patients had longer door to reperfusion time (138 vs 100 min, P=<0.001). On multivariate analysis, GA was associated with higher probability of in-hospital mortality (RR 1.871, P=0.029) and lower probability of functional independence at discharge (RR 0.53, P=0.015). Conclusion: We observed a low rate of COVID-19 infection among stroke patients undergoing MT in LCC. Overall, more than half of the patients underwent intubation prior to MT, leading to prolonged door to reperfusion time, higher in-hospital mortality, and lower likelihood of functional independence at discharge.info:eu-repo/semantics/publishedVersio

    Mechanisms and treatment of ischaemic stroke: insights from genetic associations

    Get PDF
    The precise pathophysiology of ischaemic stroke is unclear, and a greater understanding of the different mechanisms that underlie large-artery, cardioembolic and lacunar ischaemic stroke subtypes would enable the development of more-effective, subtype-specific therapies. Genome-wide association studies (GWASs) are identifying novel genetic variants that associate with the risk of stroke. These associations provide insight into the pathophysiological mechanisms, and present opportunities for novel therapeutic approaches. In this Review, we summarize the genetic variants that have been linked to ischaemic stroke in GWASs to date and discuss the implications of these associations for both our understanding and treatment of ischaemic stroke. The majority of genetic variants identified are associated with specific subtypes of ischaemic stroke, implying that these subtypes have distinct genetic architectures and pathophysiological mechanisms. The findings from the GWASs highlight the need to consider whether therapies should be subtype-specific. Further GWASs that include large cohorts are likely to provide further insights, and emerging technologies will complement and build on the GWAS findings

    Cholinesterases: Structure, Role, and Inhibition

    Get PDF
    Acetilkolinesteraza (AChE; E.C. 3.1.1.7) i butirilkolinesteraza (BChE; E.C. 3.1.1.8) enzimi su koji se zbog svoje uloge u organizmu intenzivno istražuju unutar područja biomedicine i toksikologije. Iako strukturno homologni, ovi enzimi razlikuju se prema katalitičkoj aktivnosti, odnosno specifi čnosti prema supstratima koje mogu hidrolizirati te selektivnosti za vezanje mnogih liganada. U ovom radu dan je pregled dosadašnjih istraživanja kolinesteraza i njihovih interakcija s ligandima i inhibitorima te su izdvojene aminokiseline aktivnog mjesta koje sudjeluju u tim interakcijama.Enzymes acetylcholinesterase (AChE; E.C. 3.1.1.7) and butyrylcholinesterase (BChE; E.C. 3.1.1.8) have intensively been investigated in biomedicine and toxicology due to important role in organisms. Even if structurally homologous, they differ in catalytic activity, specificity, for substrates, and selectivity in binding to many ligands. This paper compiles the results of research on cholinesterases and their interactions with ligands and inhibitors, and identifies amino acids of active sites involved in these interactions

    Intumescent coating surface temperature measurement in a cone calorimeter using laser-induced phosphorescence

    No full text
    Intumescent coating acts as a thermal barrier for construction materials during fire hazards. The coating has the ability to expand by a factor of 40 or more during heat exposure. However, due to its fragile consistence, no physical or optical measurement technique has previously been able to measure the coating surface temperature during expansion. This is undesirable since without accurate information about the coating surface temperature, it will always be difficult to fully understand the heat transfer processes from the fire exposure to the coating and within the coating. Thermographic phosphor technique makes it possible to reliably measure intumescent coating surface thermometry. This paper presents the results of an experimental study using this technique. It compares experimental results with predictions of a calculation model for measurements made inside a cone calorimeter in well-controlled conditions. The coating was applied to steel plates having different thickness, in layers of 1000 g/m(2) by means of a brush. Thermographic phosphor particles were seeded on the surface of the coating. The coated plate was placed in a non-standard electric cone calorimeter, which was calibrated to give a constant radiant heat flux of 50 kW/m(2), measured by a Gardon-type Medtherm heat flux meter at a height of 40 mm from the surface of the coating before expansion, being about the expected position after the intumescent coating had fully expanded. The third harmonic generation of a pulsed Nd:YAG laser at 355 nm was used to excite the phosphor particles. A photomultiplier detector monitored the subsequent emission and an ICCD camera was used to measure the expansion rate of the intumescent coating. A comparison between measurement results using this technique and predictions of a model that adequately describes the heat transfer condition of the test setup shows that the measured and predicted surface temperatures were generally in good agreement. The inaccuracy in the predicted results is due to the uncertainty over the emissivity value of the intumescent coating surface. The results of this study clearly indicate that thermographic phosphor technique is promising. (C) 2006 Elsevier Ltd. All rights reserved

    Fourier transforms of functions in Herz spaces on certain groups

    No full text
    10.1007/BF01909257Analysis Mathematica112179-186ANMA

    Amin-?-Ketos�ure-transaminasen in Extrakten tierischer Organe

    No full text
    corecore