25,030 research outputs found

    Synchronizer for random binary data

    Get PDF
    Simplified binary-data transition detector, for synchronization of relatively noise-free signals, can be used with radio or cable data-control links. It permits reception of binary data in absence of clock signal or self-clocking coder

    A circumpolar perspective on fluvial sediment flux to the Arctic ocean

    Get PDF
    Quantification of sediment fluxes from rivers is fundamental to understanding land‐ocean linkages in the Arctic. Numerous publications have focused on this subject over the past century, yet assessments of temporal trends are scarce and consensus on contemporary fluxes is lacking. Published estimates vary widely, but often provide little accessory information needed to interpret the differences. We present a pan‐arctic synthesis of sediment flux from 19 arctic rivers, primarily focusing on contributions from the eight largest ones. For this synthesis, historical records and recent unpublished data were compiled from Russian, Canadian, and United States sources. Evaluation of these data revealed no long‐term trends in sediment flux, but did show stepwise changes in the historical records of two of the rivers. In some cases, old values that do not reflect contemporary fluxes are still being reported, while in other cases, typographical errors have been propagated into the recent literature. Most of the discrepancy among published estimates, however, can be explained by differences in years of records examined and gauging stations used. Variations in sediment flux from year to year in arctic rivers are large, so estimates based on relatively few years can differ substantially. To determine best contemporary estimates of sediment flux for the eight largest arctic rivers, we used a combination of newly available data, historical records, and literature values. These estimates contribute to our understanding of carbon, nutrient, and contaminant transport to the Arctic Ocean and provide a baseline for detecting future anthropogenic or natural change in the Arctic

    Experimental and numerical analyses of laminar boundary-layer flow stability over an aircraft fuselage forebody

    Get PDF
    Fuelled by a need to reduce viscous drag of airframes, significant advances have been made in the last decade to design lifting surface geometries with considerable amounts of laminar flow. In contrast to the present understanding of practical limits for natural laminar flow over lifting surfaces, limited experimental results are available examining applicability of natural laminar flow over axisymmetric and nonaxisymmetric fuselage shapes at relevantly high length Reynolds numbers. The drag benefits attainable by realizing laminar flow over nonlifting aircraft components such as fuselages and nacelles are shown. A flight experiment to investigate transition location and transition mode over the forward fuselage of a light twin engine propeller driven airplane is examined

    Ab Initio Liquid Hydrogen Muon Cooling Simulations with ELMS in ICOOL

    Get PDF
    This paper presents new theoretical results on the passage of muons through liquid hydrogen which have been confirmed in a recent experiment. These are used to demonstrate that muon bunches may be compressed by ionisation cooling more effectively than suggested by previous calculations. Muon cooling depends on the differential cross section for energy loss and scattering of muons. We have calculated this cross section for liquid H2 from first principles and atomic data, avoiding traditional assumptions. Thence, 2-D probability maps of energy loss and scattering in mm-scale thicknesses are derived by folding, and stored in a database. Large first-order correlations between energy loss and scattering are found for H2, which are absent in other simulations. This code is named ELMS, Energy Loss & Multiple Scattering. Single particle trajectories may then be tracked by Monte Carlo sampling from this database on a scale of 1 mm or less. This processor has been inserted into the cooling code ICOOL. Significant improvements in 6-D muon cooling are predicted compared with previous predictions based on GEANT. This is examined in various geometries. The large correlation effect is found to have only a small effect on cooling. The experimental scattering observed for liquid H2 in the MUSCAT experiment has recently been reported to be in good agreement with the ELMS prediction, but in poor agreement with GEANT simulation.Comment: 6 pages, 3 figure

    Performance of Oil Pumping Rings: An Analytical and Experimental Study

    Get PDF
    A steady-state design computer program was developed to predict the performance of pumping rings as functions of geometry, applied loading, speed, ring modulus, and fluid viscosity. Additional analyses were developed to predict transient behavior of the ring and the effects of temperature rises occurring in the hydrodynamic film between the ring and shaft. The analysis was initially compared with previous experimental data and then used to design additional rings for further testing. Tests were performed with Rulon, carbon-graphite, and babbit rings. The design analysis was used to size all of the rings and to select the ranges of clearances, thickness, and loading. Although full quantitative agreement was lacking, relative agreement existed in that rings that were predicted to perform well theoretically, generally performed well experimentally. Some causes for discrepanices between theory and experiment are believed to be due to starvation, leakage past the secondary seal at high pressures, and uncertainties in the small clearances and local inlet temperatures to the pumping ring. A separate preliminary analysis was performed for a pumping Leningrader seal. This anlaysis can be used to predict the film thickness and flow rate thr ough the seal as a function of pressure, speed, loading, and geometry

    Jamming transitions in a schematic model of suspension rheology

    Full text link
    We study the steady-state response to applied stress in a simple scalar model of sheared colloids. Our model is based on a schematic (F2) model of the glass transition, with a memory term that depends on both stress and shear rate. For suitable parameters, we find transitions from a fluid to a nonergodic, jammed state, showing zero flow rate in an interval of applied stress. Although the jammed state is a glass, we predict that jamming transitions have an analytical structure distinct from that of the conventional mode coupling glass transition. The static jamming transition we discuss is also distinct from hydrodynamic shear thickening.Comment: 7 pages; 3 figures; improved version with added references. Accepted for publication in Europhysics Letter

    Double-Edged Secrets

    Get PDF
    • 

    corecore