6,091 research outputs found

    On connectivity-dependent resource requirements for digital quantum simulation of dd-level particles

    Full text link
    A primary objective of quantum computation is to efficiently simulate quantum physics. Scientifically and technologically important quantum Hamiltonians include those with spin-ss, vibrational, photonic, and other bosonic degrees of freedom, i.e. problems composed of or approximated by dd-level particles (qudits). Recently, several methods for encoding these systems into a set of qubits have been introduced, where each encoding's efficiency was studied in terms of qubit and gate counts. Here, we build on previous results by including effects of hardware connectivity. To study the number of SWAP gates required to Trotterize commonly used quantum operators, we use both analytical arguments and automatic tools that optimize the schedule in multiple stages. We study the unary (or one-hot), Gray, standard binary, and block unary encodings, with three connectivities: linear array, ladder array, and square grid. Among other trends, we find that while the ladder array leads to substantial efficiencies over the linear array, the advantage of the square over the ladder array is less pronounced. These results are applicable in hardware co-design and in choosing efficient qudit encodings for a given set of near-term quantum hardware. Additionally, this work may be relevant to the scheduling of other quantum algorithms for which matrix exponentiation is a subroutine.Comment: Accepted to QCE20 (IEEE Quantum Week). Corrected erroneous circuits in Figure

    Mapping acid groundwater in Western Australia’s wheatbelt

    Get PDF
    The extent of the area affected by deep drains in Western Australia (more than 11 000 km of drains installed as of 2002: Australian Bureau of Statistics 2002) and their continuing installation by land managers make understanding the distribution of naturally occurring acid groundwater a priority for land managers working toward sustainable agricultural production in the wheatbelt. This report describes development of a map of the likelihood of acid groundwater occurrence. It is meant to guide state agencies, natural resource management groups, landholders, and community stakeholders on where acid groundwater may occur

    Magic-State Functional Units: Mapping and Scheduling Multi-Level Distillation Circuits for Fault-Tolerant Quantum Architectures

    Full text link
    Quantum computers have recently made great strides and are on a long-term path towards useful fault-tolerant computation. A dominant overhead in fault-tolerant quantum computation is the production of high-fidelity encoded qubits, called magic states, which enable reliable error-corrected computation. We present the first detailed designs of hardware functional units that implement space-time optimized magic-state factories for surface code error-corrected machines. Interactions among distant qubits require surface code braids (physical pathways on chip) which must be routed. Magic-state factories are circuits comprised of a complex set of braids that is more difficult to route than quantum circuits considered in previous work [1]. This paper explores the impact of scheduling techniques, such as gate reordering and qubit renaming, and we propose two novel mapping techniques: braid repulsion and dipole moment braid rotation. We combine these techniques with graph partitioning and community detection algorithms, and further introduce a stitching algorithm for mapping subgraphs onto a physical machine. Our results show a factor of 5.64 reduction in space-time volume compared to the best-known previous designs for magic-state factories.Comment: 13 pages, 10 figure
    corecore