27,286 research outputs found
The GSFC scientific data storage problem
Scientific data storage problems of telemetry tape
Total focussing method for volumetric imaging in immersion non destructive evaluation
This paper describes the use of a 550 (25x22) element 2MHz 2D piezoelectric composite array in immersion mode to image an aluminum test block containing a collection of artificial defects. The defects included a 1mm diameter side-drilled hole, a collection of 1mm slot defects with varying degrees of skew to the normal and a flat bottomed hole. The data collection was carried out using the full matrix capture; a scanning procedure was developed to allow the operation of the large element count array through a conventional 64-channel phased array controller. A 3D TFM algorithm capable of imaging in a dual media environment was implemented in MATLAB for the offline processing the raw scan data. This algorithm facilitates the creation of 3D images of defects while accounting for refraction effects at material boundaries. In each of the test samples interrogated the defects, and their spatial position, are readily identified using TFM. Defect directional information has been characterized using VTFM for defect exhibiting angles up to and including 45o of skew
Jamming transitions in a schematic model of suspension rheology
We study the steady-state response to applied stress in a simple scalar model
of sheared colloids. Our model is based on a schematic (F2) model of the glass
transition, with a memory term that depends on both stress and shear rate. For
suitable parameters, we find transitions from a fluid to a nonergodic, jammed
state, showing zero flow rate in an interval of applied stress. Although the
jammed state is a glass, we predict that jamming transitions have an analytical
structure distinct from that of the conventional mode coupling glass
transition. The static jamming transition we discuss is also distinct from
hydrodynamic shear thickening.Comment: 7 pages; 3 figures; improved version with added references. Accepted
for publication in Europhysics Letter
A transient heat transfer and thermodynamic analysis of the Apollo service module propulsion system. Vol. I, phase I - Transient thermal analysis Final report, 28 Jul. 1964 - 28 Jul. 1965
Transient heat transfer and thermodynamic behavior analysis for Apollo service module propulsion system - fuel cell effect on overheatin
Alternative derivation of the Feigel effect and call for its experimental verification
A recent theory by Feigel [Phys. Rev. Lett. {\bf 92}, 020404 (2004)] predicts
the finite transfer of momentum from the quantum vacuum to a fluid placed in
strong perpendicular electric and magnetic fields. The momentum transfer arises
because of the optically anisotropic magnetoelectric response induced in the
fluid by the fields. After summarising Feigel's original assumptions and
derivation (corrected of trivial mistakes), we rederive the same result by a
simpler route, validating Feigel's semi-classical approach. We then derive the
stress exerted by the vacuum on the fluid which, if the Feigel hypothesis is
correct, should induce a Poiseuille flow in a tube with maximum speed m/s (2000 times larger than Feigel's original prediction). An experiment
is suggested to test this prediction for an organometallic fluid in a tube
passing through the bore of a high strength magnet. The predicted flow can be
measured directly by tracking microscopy or indirectly by measuring the flow
rate (ml/min) corresponding to the Poiseuille flow. A second
experiment is also proposed whereby a `vacuum radiometer' is used to test a
recent prediction that the net force on a magnetoelectric slab in the vacuum
should be zero.Comment: 20 pages, 1 figures. revised and improved versio
Flux of nutrients from Russian rivers to the Arctic Ocean: Can we establish a baseline against which to judge future changes?
Climate models predict significant warming in the Arctic in the 21st century, which will impact the functioning of terrestrial and aquatic ecosystems as well as alter land‐ocean interactions in the Arctic. Because river discharge and nutrient flux integrate large‐scale processes, they should be sensitive indicators of change, but detection of future changes requires knowledge of current conditions. Our objective in this paper is to evaluate the current state of affairs with respect to estimating nutrient flux to the Arctic Ocean from Russian rivers. To this end we provide estimates of contemporary (1970s–1990s) nitrate, ammonium, and phosphate fluxes to the Arctic Ocean for 15 large Russian rivers. We rely primarily on the extensive data archives of the former Soviet Union and current Russian Federation and compare these values to other estimates and to model predictions. Large discrepancies exist among the various estimates. These uncertainties must be resolved so that the scientific community will have reliable data with which to calibrate Arctic biogeochemical models and so that we will have a baseline against which to judge future changes (either natural or anthropogenic) in the Arctic watershed
Entanglement witness operator for quantum teleportation
The ability of entangled states to act as resource for teleportation is
linked to a property of the fully entangled fraction. We show that the set of
states with their fully entangled fraction bounded by a threshold value
required for performing teleportation is both convex and compact. This feature
enables for the existence of hermitian witness operators the measurement of
which could distinguish unknown states useful for performing teleportation. We
present an example of such a witness operator illustrating it for different
classes of states.Comment: Minor revisions to match the published version. Accepted for
publication in Physical Review Letter
Quantum signatures of chaos in the dynamics of a trapped ion
We show how a nonlinear chaotic system, the parametrically kicked nonlinear
oscillator, may be realised in the dynamics of a trapped, laser-cooled ion,
interacting with a sequence of standing wave pulses. Unlike the original
optical scheme [G.J.Milburn and C.A.Holmes, Phys. Rev A, 44, p4704, (1991)],
the trapped ion enables strongly quantum dynamics with minimal dissipation.
This should permit an experimental test of one of the quantum signatures of
chaos; irregular collapse and revival dynamics of the average vibrational
energy.Comment: 9 pages, 9 Postscript figures, Revtex, submitted to Phys. Rev.
- …