447 research outputs found

    Cartilage-specific autoimmunity in animal models and clinical aspects in patients – focus on relapsing polychondritis

    Get PDF
    Relapsing polychondritis is an autoimmune disease in which an inappropriate immune response destroys cartilage. Cartilage of the ears, larynx and nose rather than spine and joint cartilage is affected by a chronic relapsing and erosive inflammation. Several animal models for relapsing polychondritis have been published in which immunization with various cartilage proteins induces a variety of chondritis symptoms that mimic those seen in patients. In this review we describe the collagens, matrilin-1 and cartilage oligomeric matrix protein as potential autoantigens able to trigger the tissue-specific immune response seen both in patients and in animal models for relapsing polychondritis and related autoimmune diseases

    The value of animal models in predicting genetic susceptibility to complex diseases such as rheumatoid arthritis

    Get PDF
    For a long time, genetic studies of complex diseases were most successfully conducted in animal models. However, the field of genetics is now rapidly evolving, and human genetics has also started to produce strong candidate genes for complex diseases. This raises the question of how to continue gene-finding attempts in animals and how to use animal models to enhance our understanding of gene function. In this review we summarize the uses and advantages of animal studies in identification of disease susceptibility genes, focusing on rheumatoid arthritis. We are convinced that animal genetics will remain a valuable tool for the identification and investigation of pathways that lead to disease, well into the future

    Type IX collagen deficiency enhances the binding of cartilage-specific antibodies and arthritis severity

    Get PDF
    Joint cartilage is attacked in both autoimmune inflammatory and osteoarthritic processes. Type IX collagen (CIX) is a protein of importance for cartilage integrity and stability. In this study we have backcrossed a transgenic disruption of the col9a1 gene, which leads to an absence of CIX, into two different inbred mouse strains, DBA/1 and B10.Q. None of the CIX-deficient mice developed observable clinical or microscopic osteoarthritis, but DBA/1 male mice had more pronounced enthesopathic arthritis, the so-called stress-induced arthritis. Both DBA/1 and B10.Q strains are susceptible to the induction of collagen-induced arthritis, and CIX deficiency in both strains led to the development of a more severe arthritis than in the controls. Induction of arthritis with monoclonal antibodies against type II collagen (CII) led to an earlier arthritis in the paws that also involved the knee joints. The antibodies used, which were specific for the J1 and the C1(I )epitopes of CII, initiate their arthritogenic attack by binding to cartilage. The C1(I)-specific antibodies bound to cartilage better in CIX-deficient mice than in wild-type animals, demonstrating that the lack of CIX in cartilage leads to an increased accessibility of structures for antibody binding and thus making the joints more vulnerable to inflammatory attack. These findings accentuate the importance of cartilage stability; cartilage disrupted as a result of genetic disorders could be more accessible and vulnerable to an autoimmune attack by pathogenic antibodies

    C4b-binding protein (C4BP) inhibits development of experimental arthritis in mice.

    Get PDF
    OBJECTIVES: To assess the human complement inhibitor C4b-binding protein (C4BP) for treatment of arthritis. METHODS: We have used two mouse models of rheumatoid arthritis (RA) to assess the therapeutic effect of C4BP on different phases of arthritis, the collagen antibody induced arthritis (CAIA), an acute antibody induced disease and the collagen induced arthritis (CIA), which carries the full complexity of arthritis. RESULTS: Purified human C4BP injected intraperitoneally alleviated CAIA significantly in a manner similar to cobra venom factor that depletes complement due to massive activation. Furthermore, C4BP was injected before and after the disease development into CIA mice. In the former case, the disease onset was delayed and in the latter, the severity of the disease was reduced in animals treated with C4BP. However, C4BP did not affect the anti-CII antibody synthesis. C4BP present in mouse sera decreased activity of the classical but not the alternative pathway of the complement system when these were assessed in a fluid phase. However, C4BP was efficiently inhibiting the alternative pathway when present on the activating surface. Taken together, the disease ameliorating effect of C4BP appears to be related to inhibition of both pathways of complement. CONCLUSIONS: Although human C4BP was cleared relatively fast from the circulation and was only moderately affecting complement activity, its effect on the disease severity was substantial, suggesting that minor alterations in complement activity can have significant therapeutic value in RA

    Critical role of the major histocompatibility complex and IL-10 in matrilin-1-induced relapsing polychondritis in mice

    Get PDF
    Relapsing polychondritis (RP) is an autoimmune disease that affects extra-articular cartilage. Matrilin-1-induced relapsing polychondritis (MIRP) is a model for RP and is useful for studies of the pathogenic mechanisms in this disease. There are indications that the major histocompatibility complex (MHC) class II plays a major role in RP, since DR4(+ )patients are more commonly affected than controls. We have now addressed the role of the MHC region, as well as the non-MHC contribution, using congenic mouse strains. Of the MHC congenic strains, B10.Q (H2(q)) was the most susceptible, the B10.P (H2(p)) and B10.R (H2(r)) strains developed mild disease, while B10 strains carrying the v, b, f, or u H2 haplotypes were resistant. A slight variation of susceptibility of H2(q )strains (B10.Q> C3H.Q> DBA/1) was observed and the (B10.Q Ă— DBA/1)F(1 )was the most susceptible of all strains. Furthermore, macrophages and CD4(+ )T cells were the most prominent cell types in inflammatory infiltrates of the tracheal cartilage. Macrophages are the major source of many cytokines, such as interleukin-10 (IL-10), which is currently being tested as a therapeutic agent in several autoimmune diseases. We therefore investigated B10.Q mice devoid of IL-10 through gene deletion and found that they developed a significantly more severe disease, with an earlier onset, than their heterozygous littermates. In conclusion, MHC genes, as well as non-MHC genes, are important for MIRP induction, and IL-10 plays a major suppressive role in cartilage inflammation of the respiratory tract

    Increased susceptibility to collagen-induced arthritis in female mice carrying congenic Cia40/Pregq2 fragments

    Get PDF
    ABSTRACT: INTRODUCTION: Collagen-induced arthritis (CIA) in mice is a commonly used experimental model for rheumatoid arthritis (RA). We have previously identified a significant quantitative trait locus denoted Cia40 on chromosome 11 that affects CIA in older female mice. This locus colocalizes with another locus, denoted Pregq2, known to affect reproductive success. The present study was performed to evaluate the role of the Cia40 locus in congenic B10.Q mice and to identify possible polymorphic candidate genes, which may also be relevant in the context of RA. METHODS: Congenic B10.Q mice carrying an NFR/N fragment surrounding the Cia40/Pregq2 loci were created by 10 generations of backcrossing (N10). The congenic mice were investigated in the CIA model, and the incidence and severity of arthritis as well as the serum levels of anti-collagen II (CII) antibodies were recorded. RESULTS: Significant effects on onset, incidence, severity, and anti-CII antibody titers were observed in female mice carrying a heterozygous congenic Cia40/Pregq2 fragment of NFR/N origin, containing one or more polymorphic genes. Congenic male mice did not show increased incidence of CIA, but males carrying a heterozygous fragment showed a significant increase in severity in comparison with wildtype B10.Q males (littermates). CONCLUSION: The Cia40/Pregq2 locus at chromosome 11 contains one or more polymorphic genes of NFR/N origin that significantly influence both incidence and severity of CIA in heterozygous congenic mice of the B10.Q strain. The major polymorphic candidate genes for the effects on CIA are Cd79b, Abca8a, and Map2k6. The congenic fragment also contains polymorphic genes that affect reproductive behavior and reproductive success. The Sox9 gene, known to influence sex reversal, is a candidate gene for the reproductive phenotype
    • …
    corecore