47 research outputs found
Evidence against protein kinase B as a mediator of contraction-induced glucose transport and GLUT4 translocation in rat skeletal muscle
AbstractBoth insulin and muscle contraction stimulate glucose transport activity. However, contraction stimulation does not involve the insulin signalling intermediate phosphatidylinositol 3-kinase (PI 3-kinase). Protein kinase B (PKB) has recently been identified as a direct downstream target of PI 3-kinase in the insulin signalling pathway. We have examined here whether the two stimuli share PKB as a convergent step in separate signalling pathways. Insulin stimulates both glucose transport, GLUT4 cell-surface content and PKB activity (by 4–6-fold above basal) in a wortmannin-sensitive manner in in vitro incubated rat soleus muscles. By contrast, muscle contraction, which stimulates glucose transport and the cell surface content of GLUT4 by 3-fold above basal levels, had no effect on PKB activity. These data demonstrate that PKB is not a mediator of contraction-induced glucose transport and GLUT4 translocation
New Insights into White-Light Flare Emission from Radiative-Hydrodynamic Modeling of a Chromospheric Condensation
(abridged) The heating mechanism at high densities during M dwarf flares is
poorly understood. Spectra of M dwarf flares in the optical and
near-ultraviolet wavelength regimes have revealed three continuum components
during the impulsive phase: 1) an energetically dominant blackbody component
with a color temperature of T 10,000 K in the blue-optical, 2) a smaller
amount of Balmer continuum emission in the near-ultraviolet at lambda 3646
Angstroms and 3) an apparent pseudo-continuum of blended high-order Balmer
lines. These properties are not reproduced by models that employ a typical
"solar-type" flare heating level in nonthermal electrons, and therefore our
understanding of these spectra is limited to a phenomenological interpretation.
We present a new 1D radiative-hydrodynamic model of an M dwarf flare from
precipitating nonthermal electrons with a large energy flux of erg
cm s. The simulation produces bright continuum emission from a
dense, hot chromospheric condensation. For the first time, the observed color
temperature and Balmer jump ratio are produced self-consistently in a
radiative-hydrodynamic flare model. We find that a T 10,000 K
blackbody-like continuum component and a small Balmer jump ratio result from
optically thick Balmer and Paschen recombination radiation, and thus the
properties of the flux spectrum are caused by blue light escaping over a larger
physical depth range compared to red and near-ultraviolet light. To model the
near-ultraviolet pseudo-continuum previously attributed to overlapping Balmer
lines, we include the extra Balmer continuum opacity from Landau-Zener
transitions that result from merged, high order energy levels of hydrogen in a
dense, partially ionized atmosphere. This reveals a new diagnostic of ambient
charge density in the densest regions of the atmosphere that are heated during
dMe and solar flares.Comment: 50 pages, 2 tables, 13 figures. Accepted for publication in the Solar
Physics Topical Issue, "Solar and Stellar Flares". Version 2 (June 22, 2015):
updated to include comments by Guest Editor. The final publication is
available at Springer via http://dx.doi.org/10.1007/s11207-015-0708-
Powder Compaction: Compression Properties of Cellulose Ethers
Effective development of matrix tablets requires a comprehensive understanding of different raw material attributes and their impact on process parameters. Cellulose ethers (CE) are the most commonly used pharmaceutical excipients in the fabrication of hydrophilic matrices. The innate good compression and binding properties of CE enable matrices to be prepared using economical direct compression (DC) techniques. However, DC is sensitive to raw material attributes, thus, impacting the compaction process. This article critically reviews prior knowledge on the mechanism of powder compaction and the compression properties of cellulose ethers, giving timely insight into new developments in this field
An Observational Overview of Solar Flares
We present an overview of solar flares and associated phenomena, drawing upon
a wide range of observational data primarily from the RHESSI era. Following an
introductory discussion and overview of the status of observational
capabilities, the article is split into topical sections which deal with
different areas of flare phenomena (footpoints and ribbons, coronal sources,
relationship to coronal mass ejections) and their interconnections. We also
discuss flare soft X-ray spectroscopy and the energetics of the process. The
emphasis is to describe the observations from multiple points of view, while
bearing in mind the models that link them to each other and to theory. The
present theoretical and observational understanding of solar flares is far from
complete, so we conclude with a brief discussion of models, and a list of
missing but important observations.Comment: This is an article for a monograph on the physics of solar flares,
inspired by RHESSI observations. The individual articles are to appear in
Space Science Reviews (2011
Work characteristics, musculoskeletal disorders, and the mediating role of psychological strain: A study of call center employees
The demands of the modern office are thought to contribute to the development of musculoskeletal disorders. For upper body and lower back disorders, these effects are hypothesized to be mediated by psychological strain. A study of 936 employees from 22 call centers supports this hypothesis. Using logistic regression and structural equation modeling, the authors found that the relationship of workload to upper body and lower back musculoskeletal disorders was largely accounted for by job-related strain. This mediating effect was less evident for arm disorders. Contrary to expectation, job autonomy had neither a direct nor a moderating effect on any musculoskeletal disorder