75 research outputs found

    Tumstatin, a Matrikine Derived from Collagen Type IVα3, is Elevated in Serum from Patients with Non-Small Cell Lung Cancer

    Get PDF
    OBJECTIVES: Fibrosis and cancer are characterized by extracellular matrix (ECM) remodeling. The basement membrane is mainly composed by collagen type IV and laminin. Tumstatin is a matrix metalloproteinase-9 (MMP-9) generated matrikine of collagen type IV α3 chain. We evaluated the potential of tumstatin as a diagnostic biomarker of lung disorders. METHODS: A monoclonal antibody was raised against the neo-epitope tumstatin. A novel competitive enzyme-linked immunosorbent assay for detection of tumstatin (TUM), was developed and technically characterized. Levels of TUM were measured in serum of patients with idiopathic pulmonary fibrosis (IPF), chronic obstructive pulmonary disease (COPD), and non–small cell lung cancer (NSCLC) belonging to two cohorts. RESULTS: The developed TUM enzyme-linked immunosorbent assay (ELISA) was technically robust. In cohort 1, levels of TUM were significantly higher in NSCLC compared to healthy controls, IPF, and COPD (P = 0.007, P = 0.03 and P = 0.001, respectively). The area under the receiver operating characteristics (AUROC) for separation of patients with NSCLC from healthy controls was 0.97, for separation of NSCLC and IPF patients was 0.98, and for separation of NSCLC and COPD patients was 1.0. In cohort 2, levels of TUM were also significantly higher in patients with NSCLC compared to healthy controls (P = 0.002), and the AUROC for separation of NSCLC and healthy controls was 0.73. CONCLUSIONS: We developed a technically robust competitive ELISA targeting the fragment tumstatin. The level of TUM in circulation was significantly higher in patients with NSCLC compared to patients with IPF, COPD and healthy controls. The assay provided high diagnostic accuracy in separating NSCLC patients from other lung disorders and from healthy controls

    Plasma levels of PRO-C3, a type III collagen synthesis marker, are associated with arterial stiffness and increased risk of cardiovascular death

    Get PDF
    Background and aims: The N-terminal propeptide of type III collagen (PRO-C3) assay measures a pro-peptide released during type III collagen synthesis, an important feature of arterial stiffening and atherogenesis. There is a clinical need for improved non-invasive, cheap and easily accessible methods for evaluating individuals at risk of cardiovascular disease (CVD). In this study, we investigate the potential of using circulating levels of PRO-C3 to mark the degree of vascular stenosis and risk of cardiovascular events. Methods: Baseline plasma levels of PRO-C3 were measured by ELISA in subjects belonging to the SUrrogate markers for Micro- and Macro-vascular hard endpoints for Innovative diabetes Tools (SUMMIT) cohort (N = 1354). Associations between PRO-C3 levels with vascular characteristics, namely stiffness and stenosis, and risk of future cardiovascular events were explored. Subjects were followed up after a median of 35 months (interquartile range 34–36 months), with recorded outcomes cardiovascular death and all-cause mortality. Results: We found a correlation between PRO-C3 levels and pulse wave velocity (rho 0.13, p = 0.000009), a measurement of arterial stiffness. Higher PRO-C3 levels were also associated with elevated blood pressure (rho 0.07, p = 0.014), as well as risk of cardiovascular mortality over a three-year follow-up period (OR 1.56, confidence interval 1.008–2.43, p = 0.046). Conclusions: Elevated circulating PRO-C3 levels are associated with arterial stiffness and future cardiovascular death, in the SUMMIT cohort, suggesting a potential value of PRO-C3 as a novel marker for declining vascular health.</p

    Serological Assessment of Activated Fibroblasts by alpha-Smooth Muscle Actin (α-SMA): A Noninvasive Biomarker of Activated Fibroblasts in Lung Disorders

    Get PDF
    OBJECTIVES: Remodeling of the extracellular matrix (ECM) is a key event in different lung disorders, such as fibrosis and cancer. The most common cell type in the connective tissue is fibroblasts, which transdifferentiate into myofibroblasts upon activation. All myofibroblasts express α-SMA, which has been found to be upregulated in lung fibrosis and cancer. We evaluated the potential of α-SMA as a noninvasive biomarker of activated fibroblasts in lung fibrosis and cancer. METHODS: A monoclonal antibody was raised against the N-terminal of α-SMA, and a novel competitive enzyme-linked immunosorbent assay (ELISA) measuring α-SMA was developed and technically characterized. Levels of α-SMA were measured in the fibroblast model, “scar-in-a-jar”, and in serum from patients with idiopathic pulmonary fibrosis (IPF), chronic obstructive lung disorder (COPD) and non–small cell lung cancer (NSCLC) belonging to two different cohorts. RESULTS: The novel α-SMA assay was developed and validated as technically robust. Based on the scar-in-a-jar results, α-SMA was only present in the fibroblasts activated by TGF-ÎČ. In cohort 1, levels of α-SMA were significantly higher in IPF, COPD and NSCLC patients compared to healthy controls (P = 0.04, P = 0.001 and P <0.0001, respectively). The area under the receiver operating characteristics (AUROC) for separation of healthy controls from IPF patients was 0.865, healthy controls from COPD patients was 0.892 and healthy controls from NSCLC patients was 0.983. In cohort 2, levels of α-SMA were also significantly higher in NSCLC patients compared to healthy controls (P = 0) and the AUROC for separating NSCLC and healthy controls was 0.715. CONCLUSIONS: In this study we developed and validated a robust competitive ELISA assay targeting the N-terminal of α-SMA. The level of α-SMA was upregulated when adding TGF-ÎČ, indicating that α-SMA is increased in activated fibroblasts. The level of α-SMA in circulation was significantly higher in patients with IPF, COPD and NSCLC compared to healthy controls. This assay could potentially be used as a novel noninvasive serological biomarker for lung disorders by providing a surrogate measure of activated fibroblasts

    The Novel Collagen Matrikine, Endotrophin, is Associated with Mortality and Cardiovascular Events in Patients with Atherosclerosis

    Get PDF
    Background: Rupture of atherosclerotic plaques is the major cause of acute cardiovascular events. The biomarker PRO-C6 measuring Endotrophin, a matrikine of collagen type VI, may provide valuable information detecting subjects in need of intensified strategies for secondary prevention. Objective: In this study, we evaluate endotrophin in human atherosclerotic plaques and circulating levels of PRO-C6 in patients with atherosclerosis, to determine the predictive potential of the biomarker. Methods: Sections from the stenotic human carotid plaques were stained with the PRO-C6 antibody. PRO-C6 was measured in serum of patients enrolled in the Carotid Plaque Imagining Project (CPIP) (discovery cohort, n = 577) and the innovative medicines initiative surrogate markers for micro- and macrovascular hard end-points for innovative diabetes tools (IMI-SUMMIT, validation cohort, n = 1,378). Median follow-up was 43 months. Kaplan–Meier curves and log-rank tests were performed in the discovery cohort. Cox proportional hazard regression analysis (HR with 95% CI) was used in the discovery cohort and binary logistic regression (OR with 95% CI) in the validation cohort. Results: PRO-C6 was localized in the core and shoulder of the atherosclerotic plaque. In the discovery cohort, PRO-C6 independently predicted future cardiovascular events (HR 1.089 [95% CI 1.019 −1.164], p = 0.01), cardiovascular death (HR 1.118 [95% CI 1.008 −1.241], p = 0.04) and all-cause death (HR 1.087 [95% CI 1.008 −1.172], p = 0.03). In the validation cohort, PRO-C6 predicted future cardiovascular events (OR 1.063 [95% CI 1.011 −1.117], p = 0.017). Conclusion: PRO-C6 is present in the atherosclerotic plaque and associated with future cardiovascular events, cardiovascular death and all-cause mortality in two large prospective cohorts

    Matrix Metalloproteinase Mediated Type I Collagen Degradation is an Independent Predictor of Increased Risk of Acute Myocardial Infarction in Postmenopausal Women

    Get PDF
    Abstract Acute myocardial infarction (AMI) is often underdiagnosed in women. It is therefore of interest to identify biomarkers that indicate increased risk of AMI and thereby help clinicians to have additional focus on the difficult AMI diagnosis. Type I Collagen, a component of the cardiac extracellular matrix, is cleaved by matrix metalloproteinases (MMPs) generating the neo-epitope C1M. We investigated the association between serum-C1M and AMI and evaluated whether C1M is a prognostic marker for outcome following AMI. This study is based on The Prospective Epidemiological Risk Factor (PERF) Study including postmenopausal women. 316 out of 5,450 women developed AMI within the follow-up period (14 years, median). A multivariate Cox analysis assessed association between serum-C1M and AMI, and re-infaction or death subsequent to AMI. The risk of AMI increased by 18% (p = 0.03) when serum-C1M was doubled and women in the highest quartile had a 33% increased risk compared to those in the low quartiles (p = 0.025). Serum-C1M was, however not related to reinfarction or death subsequent to AMI. In this study C1M was be an independent risk factor for AMI. Measuring MMP degraded type I collagen could be useful for prediction of increased risk of AMI if replicated in other cohorts
    • 

    corecore