13 research outputs found
A Lagrangian kinetic model for collisionless magnetic reconnection
A new fully kinetic system is proposed for modeling collisionless magnetic
reconnection. The formulation relies on fundamental principles in Lagrangian
dynamics, in which the inertia of the electron mean flow is neglected in the
expression of the Lagrangian, rather then enforcing a zero electron mass in the
equations of motion. This is done upon splitting the electron velocity into its
mean and fluctuating parts, so that the latter naturally produce the
corresponding pressure tensor. The model exhibits a new Coriolis force term,
which emerges from a change of frame in the electron dynamics. Then, if the
electron heat flux is neglected, the strong electron magnetization limit yields
a hybrid model, in which the electron pressure tensor is frozen into the
electron mean velocity.Comment: 15 pages, no figures. To Appear in Plasma Phys. Control. Fusio
Hamiltonian approach to hybrid plasma models
The Hamiltonian structures of several hybrid kinetic-fluid models are
identified explicitly, upon considering collisionless Vlasov dynamics for the
hot particles interacting with a bulk fluid. After presenting different
pressure-coupling schemes for an ordinary fluid interacting with a hot gas, the
paper extends the treatment to account for a fluid plasma interacting with an
energetic ion species. Both current-coupling and pressure-coupling MHD schemes
are treated extensively. In particular, pressure-coupling schemes are shown to
require a transport-like term in the Vlasov kinetic equation, in order for the
Hamiltonian structure to be preserved. The last part of the paper is devoted to
studying the more general case of an energetic ion species interacting with a
neutralizing electron background (hybrid Hall-MHD). Circulation laws and
Casimir functionals are presented explicitly in each case.Comment: 27 pages, no figures. To appear in J. Phys.
Kinetic models of heterogeneous dissipation
We suggest kinetic models of dissipation for an ensemble of interacting
oriented particles, for example, moving magnetized particles. This is achieved
by introducing a double bracket dissipation in kinetic equations using an
oriented Poisson bracket, and employing the moment method to derive continuum
equations for magnetization and density evolution. We show how our continuum
equations generalize the Debye-Hueckel equations for attracting round
particles, and Landau-Lifshitz-Gilbert equations for spin waves in magnetized
media. We also show formation of singular solutions that are clumps of aligned
particles (orientons) starting from random initial conditions. Finally, we
extend our theory to the dissipative motion of self-interacting curves.Comment: 28 pages, 2 figures. Submitted to J. Phys.
Collisionless kinetic theory of rolling molecules
We derive a collisionless kinetic theory for an ensemble of molecules
undergoing nonholonomic rolling dynamics. We demonstrate that the existence of
nonholonomic constraints leads to problems in generalizing the standard methods
of statistical physics. In particular, we show that even though the energy of
the system is conserved, and the system is closed in the thermodynamic sense,
some fundamental features of statistical physics such as invariant measure do
not hold for such nonholonomic systems. Nevertheless, we are able to construct
a consistent kinetic theory using Hamilton's variational principle in
Lagrangian variables, by regarding the kinetic solution as being concentrated
on the constraint distribution. A cold fluid closure for the kinetic system is
also presented, along with a particular class of exact solutions of the kinetic
equations.Comment: Revised version; 31 pages, 1 figur
Singular solutions for geodesic flows of Vlasov moments
For Henry McKean, on the occasion of his 75th birthday The Vlasov equation for the collisionless evolution of the single-particle probability distribution function (PDF) is a well-known example of coadjoint motion. Remarkably, the property of coadjoint motion survives the process of taking moments. That is, the evolution of the moments of the Vlasov PDF is also coadjoint motion. We find that geodesic coadjoint motion of the Vlasov moments with respect to powers of the single-particle momentum admits singular (weak) solutions concentrated on embedded subspaces of physical space. The motion and interactions of these embedded subspaces are governed by canonical Hamiltonian equations for their geodesic evolution. Contents