3 research outputs found

    Parkinson's disease and changes in the appreciation of art:A comparison of aesthetic and formal evaluations of paintings between PD patients and healthy controls

    Get PDF
    Parkinson’s disease (PD) is a progressing neurodegenerative disease predominantly involving the loss of dopamine producing neurons with hallmark symptoms of motor disorders and cognitive, motivational, emotional, and perceptual impairments. Intriguingly, PD can also be connected—often anecdotally—with a sudden burst of artistic creativity, motivation, or changed quality/style of produced art. This has led to growing empirical interest, promising a window into brain function and the unique neurological signature of artists. This topic also fits a growing interest from researchers in other areas, including Alzheimer’s or other dementia, which have suggested that specific changes in art production/appraisal may provide a unique basis for therapy, diagnosis, or understanding of these diseases. However, whether PD also shows similar impacts on how we perceive and evaluate art has never been systematically addressed. We compared a cohort of PD patients against age-matched healthy controls, asking participants to rate paintings using scales of liking and beauty and terms pertaining to artworks’ formal and conceptual qualities previously designed to provide a rubric for symptom identification. We found no evidence for PD-related differences in liking or beauty. However, PD patients showed higher ratings on assessed “emotionality,” potentially relating to the tie between PD, dopamine pathways, and emotion/reward

    A Unified Functional Network Target for Deep Brain Stimulation in Obsessive-Compulsive Disorder

    No full text
    BACKGROUND: Multiple deep brain stimulation (DBS) targets have been proposed for treating intractable obsessivecompulsive disorder (OCD). Here, we investigated whether stimulation effects of different target sites would be mediated by one common or several segregated functional brain networks. METHODS: First, seeding from active electrodes of 4 OCD patient cohorts (N = 50) receiving DBS to anterior limb of the internal capsule or subthalamic nucleus zones, optimal functional connectivity profiles for maximal Yale-Brown Obsessive Compulsive Scale improvements were calculated and cross-validated in leave-one-cohort-out and leave-one-patient-out designs. Second, we derived optimal target-specific connectivity patterns to determine brain regions mutually predictive of clinical outcome for both targets and others predictive for either target alone. Functional connectivity was defined using resting-state functional magnetic resonance imaging data acquired in 1000 healthy participants. RESULTS: While optimal functional connectivity profiles showed both commonalities and differences between target sites, robust cross-predictions of clinical improvements across OCD cohorts and targets suggested a shared network. Connectivity to the anterior cingulate cortex, insula, and precuneus, among other regions, was predictive regardless of stimulation target. Regions with maximal connectivity to these commonly predictive areas included the insula, superior frontal gyrus, anterior cingulate cortex, and anterior thalamus, as well as the original stereotactic targets. CONCLUSIONS: Pinpointing the network modulated by DBS for OCD from different target sites identified a set of brain regions to which DBS electrodes associated with optimal outcomes were functionally connected-regardless of target choice. On these grounds, we establish potential brain areas that could prospectively inform additional or alternative neuromodulation targets for obsessive-compulsive disorder

    Connectomic Deep Brain Stimulation for Obsessive-Compulsive Disorder

    No full text
    Obsessive-compulsive disorder is among the most disabling psychiatric disorders. Although deep brain stimulation is considered an effective treatment, its use in clinical practice is not fully established. This is, at least in part, due to ambiguity about the best suited target and insufficient knowledge about underlying mechanisms. Recent advances suggest that changes in broader brain networks are responsible for improvement of obsessions and compulsions, rather than local impact at the stimulation site. These findings were fueled by innovative methodological approaches using brain connectivity analyses in combination with neuromodulatory interventions. Such a connectomic approach for neuromodulation constitutes an integrative account that aims to characterize optimal target networks. In this critical review, we integrate findings from connectomic studies and deep brain stimulation interventions to characterize a neural network presumably effective in reducing obsessions and compulsions. To this end, we scrutinize methodologies and seemingly conflicting findings with the aim to merge observations to identify common and diverse pathways for treating obsessive-compulsive disorder. Ultimately, we propose a unified network that-when modulated by means of cortical or subcortical interventions-alleviates obsessive-compulsive symptoms. https://doi.org/10.1016/j.biopsych.2021.07.01
    corecore