1 research outputs found

    Regular Conjugacy Classes in the Weyl Group and Integrable Hierarchies

    Full text link
    Generalized KdV hierarchies associated by Drinfeld-Sokolov reduction to grade one regular semisimple elements from non-equivalent Heisenberg subalgebras of a loop algebra \G\otimes{\bf C}[\lambda,\lambda^{-1}] are studied. The graded Heisenberg subalgebras containing such elements are labelled by the regular conjugacy classes in the Weyl group {\bf W}(\G) of the simple Lie algebra \G. A representative w\in {\bf W}(\G) of a regular conjugacy class can be lifted to an inner automorphism of \G given by w^=exp(2iπadI0/m)\hat w=\exp\left(2i\pi {\rm ad I_0}/m\right), where I0I_0 is the defining vector of an sl2sl_2 subalgebra of \G.The grading is then defined by the operator dm,I0=mλddλ+adI0d_{m,I_0}=m\lambda {d\over d\lambda} + {\rm ad} I_0 and any grade one regular element Λ\Lambda from the Heisenberg subalgebra associated to [w][w] takes the form Λ=(C++λC)\Lambda = (C_+ +\lambda C_-), where [I0,C]=(m1)C[I_0, C_-]=-(m-1) C_- and C+C_+ is included in an sl2sl_2 subalgebra containing I0I_0. The largest eigenvalue of adI0{\rm ad}I_0 is (m1)(m-1) except for some cases in F4F_4, E6,7,8E_{6,7,8}. We explain how these Lie algebraic results follow from known results and apply them to construct integrable systems.If the largest adI0{\rm ad} I_0 eigenvalue is (m1)(m-1), then using any grade one regular element from the Heisenberg subalgebra associated to [w][w] we can construct a KdV system possessing the standard \W-algebra defined by I0I_0 as its second Poisson bracket algebra. For \G a classical Lie algebra, we derive pseudo-differential Lax operators for those non-principal KdV systems that can be obtained as discrete reductions of KdV systems related to glngl_n. Non-abelian Toda systems are also considered.Comment: 44 pages, ENSLAPP-L-493/94, substantial revision, SWAT-95-77. (use OLATEX (preferred) or LATEX
    corecore