1,566 research outputs found
Scald risk in social housing can be reduced through thermostatic control system without increasing Legionella risk: a cluster randomised trial.
OBJECTIVE: To quantify the effects of a thermostatic control system in social (public) housing on the prevalence of dangerous (>60°C) water temperatures and on fuel consumption. DESIGN: Pair-matched double-blind cluster randomised controlled trial. SETTING: Social housing in a deprived inner-London borough. PARTICIPANTS: 150 households recruited as clusters from 22 social housing estates. Four small estates were combined into two clusters (resulting in a total of 10 pairs of clusters). INTERVENTION: Social housing estate boiler houses were randomised to a thermostatic control sterilisation programme (heating water to 65°C during 00:00-06:00 h and to 50°C from 06:00 to 00:00 h daily) or to standard control (constant temperature 65°C). MAIN OUTCOME MEASURES: Water temperature over 60°C ('dangerous') after running taps for 1 min and daily fuel consumption (cubic feet of gas). RESULTS: 10 clusters (80 households) were allocated to the sterilisation programme and 10 clusters (70 households) to control, of which 73 and 67 households, respectively, were analysed. Prevalence of dangerous (>60°C) hot water temperatures at 1 min was significantly reduced with the sterilisation programme (mean of cluster prevalence 1% in sterilisation programme group vs 34% in control group; absolute difference 33%, 95% CI 12% to 54%; p=0.006). Prevalence of high (>55°C) hot water temperatures at 1 min was significantly reduced (31% sterilisation vs 59% control; absolute difference 28%, 95% CI 9% to 47%; p=0.009). Gas consumption per day reduced more in the control group than in the sterilisation programme group, although not statistically significantly (p=0.125). CONCLUSIONS: The thermostatic control with daily sterilisation was effective in capping hot water temperatures and therefore reduced scald risk. Although expected to save energy, fuel consumption was increased relative to the control group. Trial registration ClinicalTrials.gov ID: NCT00874692
Recommended from our members
What do children who stutter and their parents expect from therapy and are their hopes aligned?
Currently there are few published reports exploring what it is that children and their parents wish to see change or happen as part of therapy. A process of eliciting hopes or expectations for therapy using Solution Focused Brief Therapy (de Shazer, 1985) is routinely used at the Michael Palin Centre (MPC) with children who stutter and their parents. This qualitative study aimed to explore what children who stutter and their parents expect from therapy and whether their hopes are aligned
Technical note: Creating a four‐dimensional model of the liver using finite element analysis
Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/134997/1/mp5055.pd
Development of Aluminum LEKIDs for Balloon-Borne Far-IR Spectroscopy
We are developing lumped-element kinetic inductance detectors (LEKIDs)
designed to achieve background-limited sensitivity for far-infrared (FIR)
spectroscopy on a stratospheric balloon. The Spectroscopic Terahertz Airborne
Receiver for Far-InfraRed Exploration (STARFIRE) will study the evolution of
dusty galaxies with observations of the [CII] 158 m and other atomic
fine-structure transitions at , both through direct observations of
individual luminous infrared galaxies, and in blind surveys using the technique
of line intensity mapping. The spectrometer will require large format
(1800 detectors) arrays of dual-polarization sensitive detectors with
NEPs of W Hz. The low-volume LEKIDs are fabricated
with a single layer of aluminum (20 nm thick) deposited on a crystalline
silicon wafer, with resonance frequencies of MHz. The inductor is a
single meander with a linewidth of 0.4 m, patterned in a grid to absorb
optical power in both polarizations. The meander is coupled to a circular
waveguide, fed by a conical feedhorn. Initial testing of a small array
prototype has demonstrated good yield, and a median NEP of
W Hz.Comment: accepted for publication in Journal of Low Temperature Physic
Microwave Kinetic Inductance Detector (MKID) Camera Testing for Submillimeter Astronomy
Developing kilopixel focal planes for incoherent submm- and mm-wave detectors remains challenging due to either the large hardware overhead or the complexity of multiplexing standard detectors. Microwave kinetic inductance detectors (MKIDs) provide a efficient means to produce fully lithographic background-limited kilopixel focal planes. We are constructing an MKID-based camera for the Caltech Submillimeter Observatory with 576 spatial pixels each simultaneously sensitive in 4 bands at 230, 300, 350, and 400 GHz. The novelty of MKIDs has required us to develop new techniques for detector characterization. We have measured quasiparticle lifetimes and resonator Qs for detector bath temperatures between 200 mK and 400 mK. Equivalent lifetime measurements were made by coupling energy into the resonators either optically or by driving the third harmonic of the resonator. To determine optical loading, we use both lifetime and internal Q measurements, which range between 15,000 and 30,000 for our resonators. Spectral bandpass measurements confirm the placement of the 230 and 350 GHz bands. Additionally, beam maps measurements conform to expectations. The same device design has been characterized on both sapphire and silicon substrates, and for different detector geometries. We also report on the incorporation of new shielding to reduce detector sensitivity to local magnetic fields
Recommended from our members
Evidence of cross-cutting and redox reaction in Khatyrka meteorite reveals metallic-Al minerals formed in outer space
We report on a fragment of the quasicrystal-bearing CV3 carbonaceous chondrite Khatyrka recovered from fine-grained, clay-rich sediments in the Koryak Mountains, Chukotka (Russia). We show higher melting-point silicate glass cross-cutting lower melting-point Al-Cu-Fe alloys, as well as unambiguous evidence of a reduction-oxidation reaction history between Al-Cu-Fe alloys and silicate melt. The redox reactions involve reduction of FeO and SiO_2 to Fe and Fe-Si metal, and oxidation of metallic Al to Al_2O_3, occurring where silicate melt was in contact with Al-Cu-Fe alloys. In the reaction zone, there are metallic Fe and Fe-Si beads, aluminous spinel rinds on the Al-Cu-Fe alloys, and Al_2O_3 enrichment in the silicate melt surrounding the alloys. From this and other evidence, we demonstrate that Khatyrka must have experienced at least two distinct events: first, an event as early as 4.564 Ga in which the first Al-Cu-Fe alloys formed; and, second, a more recent impact-induced shock in space that led to transformations of and reactions between the alloys and the meteorite matrix. The new evidence firmly establishes that the Al-Cu-Fe alloys (including quasicrystals) formed in outer space in a complex, multi-stage process
Status of SuperSpec: A Broadband, On-Chip Millimeter-Wave Spectrometer
SuperSpec is a novel on-chip spectrometer we are developing for multi-object,
moderate resolution (R = 100 - 500), large bandwidth (~1.65:1) submillimeter
and millimeter survey spectroscopy of high-redshift galaxies. The spectrometer
employs a filter bank architecture, and consists of a series of half-wave
resonators formed by lithographically-patterned superconducting transmission
lines. The signal power admitted by each resonator is detected by a lumped
element titanium nitride (TiN) kinetic inductance detector (KID) operating at
100-200 MHz. We have tested a new prototype device that is more sensitive than
previous devices, and easier to fabricate. We present a characterization of a
representative R=282 channel at f = 236 GHz, including measurements of the
spectrometer detection efficiency, the detector responsivity over a large range
of optical loading, and the full system optical efficiency. We outline future
improvements to the current system that we expect will enable construction of a
photon-noise-limited R=100 filter bank, appropriate for a line intensity
mapping experiment targeting the [CII] 158 micron transition during the Epoch
of ReionizationComment: 16 pages, 10 figures, Proceedings of the SPIE Astronomical Telescopes
+ Instrumentation 2014 Conference, Vol 9153, Millimeter, Submillimeter, and
Far-Infrared Detectors and Instrumentation for Astronomy VI
- …