943 research outputs found
Catastrophic Phase Transitions and Early Warnings in a Spatial Ecological Model
Gradual changes in exploitation, nutrient loading, etc. produce shifts
between alternative stable states (ASS) in ecosystems which, quite often, are
not smooth but abrupt or catastrophic. Early warnings of such catastrophic
regime shifts are fundamental for designing management protocols for
ecosystems. Here we study the spatial version of a popular ecological model,
involving a logistically growing single species subject to exploitation, which
is known to exhibit ASS. Spatial heterogeneity is introduced by a carrying
capacity parameter varying from cell to cell in a regular lattice. Transport of
biomass among cells is included in the form of diffusion. We investigate
whether different quantities from statistical mechanics -like the variance, the
two-point correlation function and the patchiness- may serve as early warnings
of catastrophic phase transitions between the ASS. In particular, we find that
the patch-size distribution follows a power law when the system is close to the
catastrophic transition. We also provide links between spatial and temporal
indicators and analyze how the interplay between diffusion and spatial
heterogeneity may affect the earliness of each of the observables. We find that
possible remedial procedures, which can be followed after these early signals,
are more effective as the diffusion becomes lower. Finally, we comment on
similarities and differences between these catastrophic shifts and paradigmatic
thermodynamic phase transitions like the liquid-vapour change of state for a
fluid like water
Resistance and resilience of social–ecological systems to recurrent typhoon disturbance on a subtropical island: Taiwan
Tropical cyclones (TCs) have major effects on ecological and social systems. However, studies integrating the effects of TCs on both social and ecological systems are rare, especially in the northwest Pacific, where the frequency of TCs (locally named typhoons) is the highest in the world. We synthesized studies of effects of recurrent typhoons on social and ecological systems in Taiwan over the last several decades. Many responses to TCs are comparable between social and ecological systems. High forest ecosystem resistance, evident from tree mortality below 2% even following multiple strong typhoons, is comparable with resistance of social systems, including the only 4% destruction of river embankments following a typhoon that brought nearly 3000 mm rainfall in three days. High resilience as reflected by quick returns of leaf area index, mostly in one year, and streamwater chemistry, one to several weeks to pre‐typhoon levels of ecosystems, are comparable to quick repair of the power grid within one to several days and returns of vegetable price within several weeks to pre‐typhoon levels of the social systems. Landslides associated with intense typhoons have buried mountain villages and transported large quantities of woody debris to the coast, affecting the coastal plains and reefs, illustrating a ridge‐to‐reef link between ecological and societal systems. Metrics of both social and ecological function showed large fluctuations in response to typhoons but quickly returned to pre‐disturbance levels, except when multiple intense typhoons occurred within a single season. Our synthesis illustrates that the social–ecological systems in Taiwan are highly dynamic and responsive to frequent typhoon disturbance, with extraordinarily high resistance and resilience. For ecosystems, the efficient responsiveness results from the selective force of TCs on ecosystem structure and processes. For social systems, it is the result of the effects of TCs on planning and decision making by individuals (e.g., farmers), management sectors, and ultimately the government. In regions with frequent TCs, the social–ecological systems are inevitably highly dynamic and rapid responses are fundamental to system resistance and resilience which in turn is key to maintaining structure and function of the social–ecological systems
Modeling resilience and sustainability in ancient agricultural systems
The reasons why people adopt unsustainable agricultural practices, and the ultimate environmental implications of those practices, remain incompletely understood in the present world. Archaeology, however, offers unique datasets on coincident cultural and ecological change, and their social and environmental effects. This article applies concepts derived from ecological resilience thinking to assess the sustainability of agricultural practices as a result of long-term interactions between political, economic, and environmental systems. Using the urban center of Gordion, in central Turkey, as a case study, it is possible to identify mismatched social and ecological processes on temporal, spatial, and organizational scales, which help to resolve thresholds of resilience. Results of this analysis implicate temporal and spatial mismatches as a cause for local environmental degradation, and increasing extralocal economic pressures as an ultimate cause for the adoption of unsustainable land-use practices. This analysis suggests that a research approach that integrates environmental archaeology with a resilience perspective has considerable potential for explicating regional patterns of agricultural change and environmental degradation in the past
Networked buffering: a basic mechanism for distributed robustness in complex adaptive systems
A generic mechanism - networked buffering - is proposed for the generation of robust traits in complex systems. It requires two basic conditions to be satisfied: 1) agents are versatile enough to perform more than one single functional role within a system and 2) agents are degenerate, i.e. there exists partial overlap in the functional capabilities of agents. Given these prerequisites, degenerate systems can readily produce a distributed systemic response to local perturbations. Reciprocally, excess resources related to a single function can indirectly support multiple unrelated functions within a degenerate system. In models of genome:proteome mappings for which localized decision-making and modularity of genetic functions are assumed, we verify that such distributed compensatory effects cause enhanced robustness of system traits. The conditions needed for networked buffering to occur are neither demanding nor rare, supporting the conjecture that degeneracy may fundamentally underpin distributed robustness within several biotic and abiotic systems. For instance, networked buffering offers new insights into systems engineering and planning activities that occur under high uncertainty. It may also help explain recent developments in understanding the origins of resilience within complex ecosystems. \ud
\u
Can forest management based on natural disturbances maintain ecological resilience?
Given the increasingly global stresses on forests, many ecologists argue that managers must maintain ecological resilience: the capacity of ecosystems to absorb disturbances without undergoing fundamental change. In this review we ask: Can the emerging paradigm of natural-disturbance-based management (NDBM) maintain ecological resilience in managed forests? Applying resilience theory requires careful articulation of the ecosystem state under consideration, the disturbances and stresses that affect the persistence of possible alternative states, and the spatial and temporal scales of management relevance. Implementing NDBM while maintaining resilience means recognizing that (i) biodiversity is important for long-term ecosystem persistence, (ii) natural disturbances play a critical role as a generator of structural and compositional heterogeneity at multiple scales, and (iii) traditional management tends to produce forests more homogeneous than those disturbed naturally and increases the likelihood of unexpected catastrophic change by constraining variation of key environmental processes. NDBM may maintain resilience if silvicultural strategies retain the structures and processes that perpetuate desired states while reducing those that enhance resilience of undesirable states. Such strategies require an understanding of harvesting impacts on slow ecosystem processes, such as seed-bank or nutrient dynamics, which in the long term can lead to ecological surprises by altering the forest's capacity to reorganize after disturbance
Do we need to rethink our waterways? Values of ageing waterways in current and future society
In the past canals were developed, and some rivers were heavily altered, driven by the need for good transportation infrastructure. Major investments were made in navigation locks, weirs and artificial embankments, and many of these assets are now reaching the end of their technical lifetime. Since then the concept of integrated water resource management (IWRM) emerged as a concept to manage and develop water-bodies in general. Two pressing problems arise from these developments: (1) major reinvestment is needed in order to maintain the transportation function of these waterways, and (2), it is not clear how the implementation of the concept of IWRM can be brought into harmony with such reinvestment. This paper aims to illustrate the problems in capital-intensive parts of waterway systems, and argues for exploring value-driven solutions that rely on the inclusion of multiple values, thus solving both funding problems and stakeholder conflicts. The focus on value in cooperative strategies is key to defining viable implementation strategies for waterway projects
Understanding Social Resilience in the Maine Lobster Industry
The Maine lobster Homarus americanus fishery is considered one of the most successful fisheries in the world due in part to its unique comanagement system, the conservation ethic of the harvesters, and the ability of the industry to respond to crises and solve collective-action problems. However, recent threats raise the question whether the industry will be able to respond to future threats as successfully as it has to ones in the past or whether it is now less resilient and can no longer adequately respond to threats. Through ethnographic research and oral histories with fishermen, we examined the current level of social resilience in the lobster fishery. We concentrated on recent threats to the industry and the ways in which it has responded to them, focusing on three situations: a price drop beginning in 2008, a recovery in 2010–2011, and a second collapse of prices in 2012. In addition, we considered other environmental and regulatory concerns identified by fishermen. We found that the industry is not responding effectively to recent threats and identified factors that might explain the level of social resilience in the fishery
Analysis and Evaluation of Ecosystem Resilience: An Economic Perspective
This paper focuses on the analyses and evaluation of resilience anchored in an economic perspective. Resilience, as well as most of the benefits provided by ecosystems, is not priced on current markets. However, this does not mean that resilience is of no value for humans. On the contrary, the interest of using an economic perspective, and the respective scientific methodology, will be put forward in terms of resilience relevance for ecosystems life and functioning, and its impact on human welfare. The economic perspective is anchored in an anthropocentric analysis meaning that resilience is evaluated in terms of provision of natural capital benefits. These, in turn, are interpreted as an insurance against the risk of ecosystem malfunctioning and the consequent interruption of the provision of goods and services to humans. For this analysis, we make use of a conceptual framework so as to identify and describe the different value components of resilience. Finally, we present an illustration that tackles the economic analysis and discussion of resilience benefits in the context of the Venice Lagoon
Recommended from our members
Evidence for functional state transitions in intensively-managed soil ecosystems
Soils are fundamental to terrestrial ecosystem functioning and food security, thus their resilience to disturbances is critical. Furthermore, they provide effective models of complex natural systems to explore resilience concepts over experimentally-tractable short timescales. We studied soils derived from experimental plots with different land-use histories of long-term grass, arable and fallow to determine whether regimes of extreme drying and re-wetting would tip the systems into alternative stable states, contingent on their historical management. Prior to disturbance, grass and arable soils produced similar respiration responses when processing an introduced complex carbon substrate. A distinct respiration response from fallow soil here indicated a different prior functional state. Initial dry:wet disturbances reduced the respiration in all soils, suggesting that the microbial community was perturbed such that its function was impaired. After 12 drying and rewetting cycles, despite the extreme disturbance regime, soil from the grass plots, and those that had recently been grass, adapted and returned to their prior functional state. Arable soils were less resilient and shifted towards a functional state more similar to that of the fallow soil. Hence repeated stresses can apparently induce persistent shifts in functional states in soils, which are influenced by management history
Neurology and neuropsychiatry of COVID-19: a systematic review and meta-analysis of the early literature reveals frequent CNS manifestations and key emerging narratives
There is accumulating evidence of the neurological and neuropsychiatric features of infection with SARS-CoV-2. In this systematic review and meta-analysis, we aimed to describe the characteristics of the early literature and estimate point prevalences for neurological and neuropsychiatric manifestations.We searched MEDLINE, Embase, PsycINFO and CINAHL up to 18 July 2020 for randomised controlled trials, cohort studies, case-control studies, cross-sectional studies and case series. Studies reporting prevalences of neurological or neuropsychiatric symptoms were synthesised into meta-analyses to estimate pooled prevalence.13 292 records were screened by at least two authors to identify 215 included studies, of which there were 37 cohort studies, 15 case-control studies, 80 cross-sectional studies and 83 case series from 30 countries. 147 studies were included in the meta-analysis. The symptoms with the highest prevalence were anosmia (43.1% (95% CI 35.2% to 51.3%), n=15 975, 63 studies), weakness (40.0% (95% CI 27.9% to 53.5%), n=221, 3 studies), fatigue (37.8% (95% CI 31.6% to 44.4%), n=21 101, 67 studies), dysgeusia (37.2% (95% CI 29.8% to 45.3%), n=13 686, 52 studies), myalgia (25.1% (95% CI 19.8% to 31.3%), n=66 268, 76 studies), depression (23.0% (95% CI 11.8% to 40.2%), n=43 128, 10 studies), headache (20.7% (95% CI 16.1% to 26.1%), n=64 613, 84 studies), anxiety (15.9% (5.6% to 37.7%), n=42 566, 9 studies) and altered mental status (8.2% (95% CI 4.4% to 14.8%), n=49 326, 19 studies). Heterogeneity for most clinical manifestations was high.Neurological and neuropsychiatric symptoms of COVID-19 in the pandemic's early phase are varied and common. The neurological and psychiatric academic communities should develop systems to facilitate high-quality methodologies, including more rapid examination of the longitudinal course of neuropsychiatric complications of newly emerging diseases and their relationship to neuroimaging and inflammatory biomarkers
- …