1,437 research outputs found

    Analytic Solution for the Ground State Energy of the Extensive Many-Body Problem

    Full text link
    A closed form expression for the ground state energy density of the general extensive many-body problem is given in terms of the Lanczos tri-diagonal form of the Hamiltonian. Given the general expressions of the diagonal and off-diagonal elements of the Hamiltonian Lanczos matrix, αn(N)\alpha_n(N) and βn(N)\beta_n(N), asymptotic forms α(z)\alpha(z) and β(z)\beta(z) can be defined in terms of a new parameter z≡n/Nz\equiv n/N (nn is the Lanczos iteration and NN is the size of the system). By application of theorems on the zeros of orthogonal polynomials we find the ground-state energy density in the bulk limit to be given in general by E0=inf [α(z)−2 β(z)]{\cal E}_0 = {\rm inf}\,\left[\alpha(z) - 2\,\beta(z)\right].Comment: 10 pages REVTex3.0, 3 PS figure

    Modal expansions and non-perturbative quantum field theory in Minkowski space

    Full text link
    We introduce a spectral approach to non-perturbative field theory within the periodic field formalism. As an example we calculate the real and imaginary parts of the propagator in 1+1 dimensional phi^4 theory, identifying both one-particle and multi-particle contributions. We discuss the computational limits of existing diagonalization algorithms and suggest new quasi-sparse eigenvector methods to handle very large Fock spaces and higher dimensional field theories.Comment: new material added, 12 pages, 6 figure

    Asymmetric quantum error correction via code conversion

    Full text link
    In many physical systems it is expected that environmental decoherence will exhibit an asymmetry between dephasing and relaxation that may result in qubits experiencing discrete phase errors more frequently than discrete bit errors. In the presence of such an error asymmetry, an appropriately asymmetric quantum code - that is, a code that can correct more phase errors than bit errors - will be more efficient than a traditional, symmetric quantum code. Here we construct fault tolerant circuits to convert between an asymmetric subsystem code and a symmetric subsystem code. We show that, for a moderate error asymmetry, the failure rate of a logical circuit can be reduced by using a combined symmetric asymmetric system and that doing so does not preclude universality.Comment: 5 pages, 8 figures, presentation revised, figures and references adde
    • …
    corecore