9 research outputs found
Recommendations for the advancement of oil-in-water media and source oil characterization in aquatic toxicity test studies
During toxicity testing, chemical analyses of oil and exposure media samples are needed to allow comparison of results between different tests as well as to assist with identification of the drivers and mechanisms for the toxic effects observed. However, to maximize the ability to compare results between different laboratories and biota, it has long been recognized that guidelines for standard protocols were needed. In 2005, the Chemical Response to Oil Spills: Ecological Effects Research Forum (CROSERF) protocol was developed with existing common analytical methods that described a standard method for reproducible preparation of exposure media as well as recommended specific analytical methods and analyte lists for comparative toxicity testing. At the time, the primary purpose for the data collected was to inform oil spill response and contingency planning. Since then, with improvements in both analytical equipment and methods, the use of toxicity data has expanded to include their integration into fate and effect models that aim to extend the applicability of lab-based study results to make predictions for field system-level impacts. This paper focuses on providing a summary of current chemical analyses for characterization of oil and exposure media used during aquatic toxicity testing and makes recommendations for the minimum analyses needed to allow for interpretation and modeling purposes.publishedVersio
Ecotoxicity of canola and tallow biodiesel blends to selected soil organisms
In view of depleting fossil fuel resources and environmental concern, biodiesel couldpotentially replace petroleum-derived diesel. Aquatic toxicity of diesel and biodiesel has beenextensively studied over the past decades but little is still known about their toxicity in soilenvironment. The scope of this study was to evaluate the environmental impact of biodiesel,biodiesel blends and petroleum diesel in soil using direct contact toxicity assays. The selectedbiodiesels included canola-source biodiesel (B100 and B20). and tallow-source biodiesel (B100and B20), which were compared to petroleum ultra-low-sulfur based diesel (ULSD). Selectedstandard terrestrial toxicity tests included ryegrass Lolium perenne seedling emergence andgrowth, earthworm Eisenia fetida survival, and soil microbial dehydrogenase activity. Soilcharacterization included the quantification of total extractable materials (corresponding to the n-alkane range of C10-C34). Preliminary results indicate that: 1) canola and tallow B20 biodieselblends were less toxic to earthworm than ULSD; 2) canola and tallow B20 blends had similartoxic effects to ryegrass as ULSD; and 3) petroleum ULSD inhibited the DHA activity at allconcentrations tested, and B20 canola biodiesel had a deleterious effect on the DHA activity atthe lowest nominal loadings tested (1 and 10 ml/kg dry soil). Therefore, this study providesuseful toxicological data for the evaluation of potential adverse impact of biodiesel in theenvironment, such as an accidental release or spill. This project was funded by EnvironmentCanada and Natural Resources Canada and is part of the Advanced Fuels and Technologies forEmissions Reduction (AFTER) Program for energy research and development (PERD).NRC publication: Ye