40 research outputs found
Precision bond lengths for Rydberg Matter clusters KN (N = 19, 37, 61 and 91) in excitation levels n = 4 - 8 from rotational radio-frequency emission spectra
Clusters of the electronically excited condensed matter Rydberg Matter (RM)
are planar and six-fold symmetric with magic numbers N = 7, 19, 37, 61 and 91.
The bond distances in the clusters are known with a precision of +- 5% both
from theory and Coulomb explosion experiments. Long series of up to 40
consecutive lines from rotational transitions in such clusters are now observed
in emission in the radio-frequency range 7-90 MHz. The clusters are produced in
five different vacuum chambers equipped with RM emitters. The most prominent
series with B = 0.9292 +- 0.0001 MHz agrees accurately with expectation (within
2%) for the planar six-fold symmetric cluster K19 in excitation level n = 4.
Other long series agree even better with K19 at n = 5 and 6. The ratio between
the interatomic distance and the theoretical electron orbit radius (the
dimensional ratio) for K19 in n = 4 is found to be 2.8470 +- 0.0003. For
clusters K19 (n = 6) and K37 (n = 7 and 8) the dimensional ratio 2.90 is the
highest value that is found, which happens to be exactly the theoretical value.
Clusters K61 and K91 in n = 5 and 6 have slightly lower dimensional ratios.
This is expected since the edge effects are smaller. Intensity alternations are
observed of approximately 7:3. The nuclear spins interact strongly with the
magnetic field from the orbiting electrons. Spin transitions are observed with
energy differences corresponding accurately (within 0.6%) to transitions with
apparent total (delta)F = -3 at excitation levels n = 5 and 6. The angular
momentum coupling schemes in the clusters are complex but well understood.Comment: 37 pages, 14 figure