5,759 research outputs found
On the localized phase of a copolymer in an emulsion: supercritical percolation regime
In this paper we study a two-dimensional directed self-avoiding walk model of
a random copolymer in a random emulsion. The copolymer is a random
concatenation of monomers of two types, and , each occurring with
density 1/2. The emulsion is a random mixture of liquids of two types, and
, organised in large square blocks occurring with density and ,
respectively, where . The copolymer in the emulsion has an energy
that is minus times the number of -matches minus times the
number of -matches, where without loss of generality the interaction
parameters can be taken from the cone . To make the model mathematically tractable, we assume that the
copolymer is directed and can only enter and exit a pair of neighbouring blocks
at diagonally opposite corners.
In \cite{dHW06}, it was found that in the supercritical percolation regime , with the critical probability for directed bond percolation on
the square lattice, the free energy has a phase transition along a curve in the
cone that is independent of . At this critical curve, there is a transition
from a phase where the copolymer is fully delocalized into the -blocks to a
phase where it is partially localized near the -interface. In the present
paper we prove three theorems that complete the analysis of the phase diagram :
(1) the critical curve is strictly increasing; (2) the phase transition is
second order; (3) the free energy is infinitely differentiable throughout the
partially localized phase.Comment: 43 pages and 10 figure
Intermittency on catalysts: three-dimensional simple symmetric exclusion
We continue our study of intermittency for the parabolic Anderson model
in a space-time random medium
, where is a positive diffusion constant, is the lattice
Laplacian on , , and is a simple symmetric exclusion
process on in Bernoulli equilibrium. This model describes the evolution
of a \emph{reactant} under the influence of a \emph{catalyst} .
In G\"artner, den Hollander and Maillard (2007) we investigated the behavior
of the annealed Lyapunov exponents, i.e., the exponential growth rates as
of the successive moments of the solution . This led to an
almost complete picture of intermittency as a function of and . In
the present paper we finish our study by focussing on the asymptotics of the
Lyaponov exponents as in the \emph{critical} dimension ,
which was left open in G\"artner, den Hollander and Maillard (2007) and which
is the most challenging. We show that, interestingly, this asymptotics is
characterized not only by a \emph{Green} term, as in , but also by a
\emph{polaron} term. The presence of the latter implies intermittency of
\emph{all} orders above a finite threshold for .Comment: 38 page
Intermittency on catalysts
The present paper provides an overview of results obtained in four recent
papers by the authors. These papers address the problem of intermittency for
the Parabolic Anderson Model in a \emph{time-dependent random medium},
describing the evolution of a ``reactant'' in the presence of a ``catalyst''.
Three examples of catalysts are considered: (1) independent simple random
walks; (2) symmetric exclusion process; (3) symmetric voter model. The focus is
on the annealed Lyapunov exponents, i.e., the exponential growth rates of the
successive moments of the reactant. It turns out that these exponents exhibit
an interesting dependence on the dimension and on the diffusion constant.Comment: 11 pages, invited paper to appear in a Festschrift in honour of
Heinrich von Weizs\"acker, on the occasion of his 60th birthday, to be
published by Cambridge University Pres
Intermittency on catalysts: Voter model
In this paper we study intermittency for the parabolic Anderson equation
with
, where is
the diffusion constant, is the discrete Laplacian,
is the coupling constant, and
is a space--time random medium.
The solution of this equation describes the evolution of a ``reactant''
under the influence of a ``catalyst'' . We focus on the case where
is the voter model with opinions 0 and 1 that are updated according to a random
walk transition kernel, starting from either the Bernoulli measure
or the equilibrium measure , where is the density of
1's. We consider the annealed Lyapunov exponents, that is, the exponential
growth rates of the successive moments of . We show that if the random walk
transition kernel has zero mean and finite variance, then these exponents are
trivial for , but display an interesting dependence on the
diffusion constant for , with qualitatively different
behavior in different dimensions. In earlier work we considered the case where
is a field of independent simple random walks in a Poisson equilibrium,
respectively, a symmetric exclusion process in a Bernoulli equilibrium, which
are both reversible dynamics. In the present work a main obstacle is the
nonreversibility of the voter model dynamics, since this precludes the
application of spectral techniques. The duality with coalescing random walks is
key to our analysis, and leads to a representation formula for the Lyapunov
exponents that allows for the application of large deviation estimates.Comment: Published in at http://dx.doi.org/10.1214/10-AOP535 the Annals of
Probability (http://www.imstat.org/aop/) by the Institute of Mathematical
Statistics (http://www.imstat.org
Stretched Exponential Relaxation in the Biased Random Voter Model
We study the relaxation properties of the voter model with i.i.d. random
bias. We prove under mild condions that the disorder-averaged relaxation of
this biased random voter model is faster than a stretched exponential with
exponent , where depends on the transition rates
of the non-biased voter model. Under an additional assumption, we show that the
above upper bound is optimal. The main ingredient of our proof is a result of
Donsker and Varadhan (1979).Comment: 14 pages, AMS-LaTe
Multi-colony Wright-Fisher with seed-bank
Analysis and Stochastic
THE DECAY OF NEPTUNIUM-238
>A study was made of the energy levels of Pu/sup 238/ which are populated by Np/sup 238/ beta decay, by an examination of the Np/sup 238/ conversion electron spectrum in high-resolution beta spectrographs. The general features of the level scheme as previously given were unchanged but several new transitions were observed, with energies of 119.8, 871, 943, 989, and 1034 kev. Two new levels are postulated at 915 and 1034 kev which accommodate all but the 943-kev transition. A possible assignment of the 943-kev transition to the (0+.0) state of the beta vibrational band is discussed. In addition, the weak 885-kev transition from the 2+ state of the gamma -vibrational band to the 4+ state of the ground band was seen and its relative intensity determined. Comparisons were made of the experimental relative transition intensities of the three photons depopulating this band with those predicted from the rules of Alaga et al.; only fair agreement was noted. A discussion is given of the beta decay branchings and log ft values of Np/sup 238/ decay in terms of the postulated characters of the Pu/sup 238/ states and the measured spin of Np/sup 238/. (auth
- …