460 research outputs found

    The impact of strain engineering on hole mobility of In(x)Ga(1-x)As channels for III-V pMOSFET

    Get PDF
    Whilst the high electron mobility of compound semiconductors makes them attractive for beyond 22 nm CMOS, a key challenge in implementing III-V materials is their modest hole mobility. Addressing this issue motivates an investigation of the impact of strain to optimize the hole transport properties of III-V MOSFET channel materials. In this work, the researchers describe the dependence of hole mobility on the bi-axial compressive strain of InxGa1-xAs layers with indium concentrations in the range 53%-85%. The vertical architecture of the material structure of this study resembles a III-V high mobility transistor where the dopant is spatially separated from the device channel. Mobility and channel carrier concentration were determined using Hall effect measurements. While the 53% In-content (0% strain) structures demonstrated modest mobilities of 60-70 cm2/Vs, the strained structures exhibited superior transport with the 85% In-content (2.1% strain) channel demonstrating mobilities of 427-433 cm2/Vs with sheet hole densities of 1.33e12 - 1.6e12 cm-2 depending on the doping level used. To their knowledge, the room temperature mobility of the 2.1% strained structures are the highest ever reported for an InxGa1-xAs channel

    A planar Gunn diode operating above 100 GHz

    Get PDF
    We show the experimental realization of a 108-GHz planar Gunn diode structure fabricated in GaAs/AlGaAs. There is a considerable interest in such devices since they lend themselves to integration into millimeter-wave and terahertz integrated circuits. The material used was grown by molecular beam epitaxy, and devices were made using electron beam lithography. Since the frequency of oscillation is defined by the lithographically controlled anode-cathode distance, the technology shows great promise in fabricating single chip terahertz sources

    Gate recess engineering of pseudomorphic In0.30GaAs/GaAs HEMTs

    Get PDF
    The authors report how the performance of 0.12 ÎŒm GaAs pHEMTs is improved by controlling both the gate recess width, using selective dry etching, and the gate position in the source drain gap, using electron beam lithography. pHEMTs with a transconductance of 600 mS/mm, off state breakdown voltages >2 V, fτ of 120 GHz, f max of 180 GHz and MAG of 13.5 dB at 60 GHz are reported

    Cerebellar tDCS does not affect performance in the N-back task

    Get PDF
    The N-back task is widely used in cognitive research. Furthermore, the cerebellums role in cognitive processes is becoming more widely recognized. Studies using transcranial direct current stimulation (tDCS) have demonstrated effects of cerebellar stimulation on several cognitive tasks. Therefore, the aim of this study was to investigate the effects of cerebellar tDCS on cognitive performance by using the N-back task. The cerebellum of 12 participants was stimulated during the task. Moreover, the cognitive load was manipulated in N = 2, N = 3, and N = 4. Every participant received three tDCS conditions (anodal, cathodal, and sham) divided over three separated days. It was expected that anodal stimulation would improve performance on the task. Each participant performed 6 repetitions of every load in which correct responses, false alarms, and reaction times were recorded. We found significant differences between the three levels of load in the rate of correct responses and false alarms, indicating that subjects followed the expected pattern of performance for the N-back task. However, no significant differences between the three tDCS conditions were found. Therefore, it was concluded that in this study cognitive performance on the N-back task was not readily influenced by cerebellar tDCS, and any true effects are likely to be small. We discuss several limitations in task design and suggest future experiments to address such issues

    Cerebellar tDCS does not improve performance in probabilistic classification learning

    Get PDF
    In this study, the role of the cerebellum in a cognitive learning task using transcranial direct current stimulation (tDCS) was investigated. Using a weather prediction task, subjects had to learn the probabilistic associations between a stimulus (a combination of cards) and an outcome (sun or rain). This task is a variant of a probabilistic classification learning task, for which it has been reported that prefrontal tDCS enhances performance. Using a between-subject design, all 30 subjects learned to improve their performance with increasing accuracies and shortened response times over a series of 500 trials. Subjects also became more confident in their prediction during the experiment. However, no differences in performance and learning were observed between subjects receiving sham stimulation (n = 10) or anodal stimulation (2 mA for 20 min) over either the right cerebellum (n = 10) or the left prefrontal cortex (n = 10). This suggests that stimulating the brain with cerebellar tDCS does not readily influence probabilistic classification performances, probably due to the rather complex nature of this cognitive task

    Bohmian mechanics, the quantum-classical correspondence and the classical limit: the case of the square billiard

    Full text link
    Square billiards are quantum systems complying with the dynamical quantum-classical correspondence. Hence an initially localized wavefunction launched along a classical periodic orbit evolves along that orbit, the spreading of the quantum amplitude being controlled by the spread of the corresponding classical statistical distribution. We investigate wavepacket dynamics and compute the corresponding de Broglie-Bohm trajectories in the quantum square billiard. We also determine the trajectories and statistical distribution dynamics for the equivalent classical billiard. Individual Bohmian trajectories follow the streamlines of the probability flow and are generically non-classical. This can also hold even for short times, when the wavepacket is still localized along a classical trajectory. This generic feature of Bohmian trajectories is expected to hold in the classical limit. We further argue that in this context decoherence cannot constitute a viable solution in order to recover classicality.Comment: Figures downgraded to low resolution; To be published in Found. Phys. (2009)

    The Kuiper Belt and Other Debris Disks

    Full text link
    We discuss the current knowledge of the Solar system, focusing on bodies in the outer regions, on the information they provide concerning Solar system formation, and on the possible relationships that may exist between our system and the debris disks of other stars. Beyond the domains of the Terrestrial and giant planets, the comets in the Kuiper belt and the Oort cloud preserve some of our most pristine materials. The Kuiper belt, in particular, is a collisional dust source and a scientific bridge to the dusty "debris disks" observed around many nearby main-sequence stars. Study of the Solar system provides a level of detail that we cannot discern in the distant disks while observations of the disks may help to set the Solar system in proper context.Comment: 50 pages, 25 Figures. To appear in conference proceedings book "Astrophysics in the Next Decade
    • 

    corecore