15,189 research outputs found
Implications of Lorentz covariance for the guidance equation in two-slit quantum interference
It is known that Lorentz covariance fixes uniquely the current and the
associated guidance law in the trajectory interpretation of quantum mechanics
for spin particles. In the non-relativistic domain this implies a guidance law
for the electron which differs by an additional spin-dependent term from that
originally proposed by de Broglie and Bohm. In this paper we explore some of
the implications of the modified guidance law. We bring out a property of
mutual dependence in the particle coordinates that arises in product states,
and show that the quantum potential has scalar and vector components which
implies the particle is subject to a Lorentz-like force. The conditions for the
classical limit and the limit of negligible spin are given, and the empirical
sufficiency of the model is demonstrated. We then present a series of
calculations of the trajectories based on two-dimensional Gaussian wave packets
which illustrate how the additional spin-dependent term plays a significant
role in structuring both the individual trajectories and the ensemble. The
single packet corresponds to quantum inertial motion. The distinct features
encountered when the wavefunction is a product or a superposition are explored,
and the trajectories that model the two-slit experiment are given. The latter
paths exhibit several new characteristics compared with the original de
Broglie-Bohm ones, such as crossing of the axis of symmetry.Comment: 27 pages including 6 pages of figure
Image lag optimisation in a 4T CMOS image sensor for the JANUS camera on ESA's JUICE mission to Jupiter
The CIS115, the imager selected for the JANUS camera on ESA’s JUICE mission to Jupiter, is a Four Transistor (4T) CMOS Image Sensor (CIS) fabricated in a 0.18 µm process. 4T CIS (like the CIS115) transfer photo generated charge collected in the pinned photodiode (PPD) to the sense node (SN) through the Transfer Gate (TG). These regions are held at different potentials and charge is transferred from the potential well under PPD to the potential well under the FD through a voltage pulse applied to the TG. Incomplete transfer of this charge can result in image lag, where signal in previous frames can manifest itself in subsequent frames, often appearing as ghosted images in successive readouts. This can seriously affect image quality in scientific instruments and must be minimised. This is important in the JANUS camera, where image quality is essential to help JUICE meet its scientific objectives. This paper presents two techniques to minimise image lag within the CIS115. An analysis of the optimal voltage for the transfer gate voltage is detailed where optimisation of this TG “ON” voltage has shown to minimise image lag in both an engineering model and gamma and proton irradiated devices. Secondly, a new readout method of the CIS115 is described, where following standard image integration, the PPD is biased to the reset voltage level (VRESET) through the transfer gate to empty charge on the PPD and has shown to reduce image lag in the CIS115
Quantum Kinetic Theory III: Simulation of the Quantum Boltzmann Master Equation
We present results of simulations of a em quantum Boltzmann master equation
(QBME) describing the kinetics of a dilute Bose gas confined in a trapping
potential in the regime of Bose condensation. The QBME is the simplest version
of a quantum kinetic master equations derived in previous work. We consider two
cases of trapping potentials: a 3D square well potential with periodic boundary
conditions, and an isotropic harmonic oscillator. We discuss the stationary
solutions and relaxation to equilibrium. In particular, we calculate particle
distribution functions, fluctuations in the occupation numbers, the time
between collisions, and the mean occupation numbers of the one-particle states
in the regime of onset of Bose condensation.Comment: 12 pages, 15 figure
EMCCDs for space applications
This paper describes a qualification programme for Electron-Multiplication Charge Coupled Devices (EMCCDs) for use in space applications. While the presented results are generally applicable, the programme was carried out in the context of CCD development for the Radial Velocity Spectrometer (RVS) instrument on the European Space Agency's cornerstone Gaia mission. We discuss the issues of device radiation tolerance, charge transfer efficiency at low signal levels and life time effects on the electron-multiplication gain. The development of EMCCD technology to allow operation at longer wavelengths using high resistivity silicon, and the cryogenic characterisation of EMCCDs are also described
First Observations of the Magnetic Field Geometry in Pre-stellar Cores
We present the first published maps of magnetic fields in pre-stellar cores,
to test theoretical ideas about the way in which the magnetic field geometry
affects the star formation process. The observations are JCMT-SCUBA maps of 850
micron thermal emission from dust. Linear polarizations at typically ten or
more independent positions in each of three objects, L1544, L183 and L43 were
measured, and the geometries of the magnetic fields in the plane of the sky
were mapped from the polarization directions. The observed polarizations in all
three objects appear smooth and fairly uniform. In L1544 and L183 the mean
magnetic fields are at an angle of around 30 degrees to the minor axes of the
cores. The L43 B-field appears to have been influenced in its southern half,
such that it is parallel to the wall of a cavity produced by a CO outflow from
a nearby T Tauri star, whilst in the northern half the field appears less
disturbed and has an angle of 44 degrees to the core minor axis. We briefly
compare our results with published models of magnetized cloud cores and
conclude that no current model can explain these observations simultaneously
with previous ISOCAM data.Comment: 13 pages, 3 figs, to appear in ApJ Letter
Vortex interaction, chaos and quantum probabilities
The motion of a single vortex is able to originate chaos in the quantum
trajectories defined in Bohm's interpretation of quantum mechanics. In this
Letter, we show that this is also the case in the general situation, in which
many interacting vortices exist. This result gives support to recent attempts
in which Born's probability rule is derived in terms of an irreversible time
evolution to equilibrium, rather than being postulated.Comment: 4 pages, 4 figure
Endpoint thermodynamics of an atomic Fermi gas subject to a Feshbach resonance
The entropy and kinetic, potential, and interaction energies of an atomic
Fermi gas in a trap are studied under the assumption of thermal equilibrium for
finite temperature. A Feshbach resonance can cause the fermions to pair into
diatomic molecules. The entropy and energies of mixtures of such molecules with
unpaired atoms are calculated, in relation to recent experiments on molecular
Bose-Einstein condensates produced in this manner. It is shown that, starting
with a Fermi gas of temperature , where is the
non-interacting Fermi temperature, an extremely cold degenerate Fermi gas of
temperature may be produced without further evaporative
cooling. This requires adiabatic passage of the resonance, subsequent sudden
removal of unpaired atoms, and adiabatic return. We also calculate the ratio of
the interaction energy to the kinetic energy, a straightforward experimental
signal which may be used to determine the temperature of the atoms and indicate
condensation of the molecules.Comment: 12 pages, 5 figure
The influence of the strength of bone on the deformation of acetabular shells : a laboratory experiment in cadavers
Date of Acceptance: 24/08/2014 ©2015 The British Editorial Society of Bone & Joint Surgery. The authors would like to thank N. Taylor (3D Measurement Company) for his work with regard to data acquisition and processing of experimental data. We would also like to thank Dr A. Blain of Newcastle University for performing the statistical analysis The research was supported by the NIHR Newcastle Biomedical Research Centre. The authors P. Dold, M. Flohr and R. Preuss are employed by Ceramtec GmbH. Martin Bone received a salary from the joint fund. The author or one or more of the authors have received or will receive benefits for personal or professional use from a commercial party related directly or indirectly to the subject of this article. This article was primary edited by G. Scott and first proof edited by J. Scott.Peer reviewedPostprin
Hierarchical Models for Independence Structures of Networks
We introduce a new family of network models, called hierarchical network
models, that allow us to represent in an explicit manner the stochastic
dependence among the dyads (random ties) of the network. In particular, each
member of this family can be associated with a graphical model defining
conditional independence clauses among the dyads of the network, called the
dependency graph. Every network model with dyadic independence assumption can
be generalized to construct members of this new family. Using this new
framework, we generalize the Erd\"os-R\'enyi and beta-models to create
hierarchical Erd\"os-R\'enyi and beta-models. We describe various methods for
parameter estimation as well as simulation studies for models with sparse
dependency graphs.Comment: 19 pages, 7 figure
- …