16,738 research outputs found
Beyond enterprise resource planning projects: innovative strategies for competitive advantage
ABSTRACT A rapidly changing business environment and legacy IT problems has resulted in many organisations implementing standard package solutions. This 'common systems' approach establishes a common IT and business process infrastructure within organisations and its increasing dominance raises several important strategic issues. These are to what extent do common systems impose common business processes and management systems on competing firms, and what is the source of competitive advantage if the majority of firms employ almost identical information systems and business processes? A theoretical framework based on research into legacy systems and earlier IT strategy literature is used to analyse three case studies in the manufacturing, chemical and IT industries. It is shown that the organisations are treating common systems as the core of their organisations' abilities to manage business transactions. To achieve competitive advantage they are clothing these common systems with information systems designed to capture information about competitors, customers and suppliers, and to provide a basis for sharing knowledge within the organisation and ultimately with economic partners. The importance of these approaches to other organisations and industries is analysed and an attempt is made at outlining the strategic options open to firms beyond the implementation of common business systems
Implications of Lorentz covariance for the guidance equation in two-slit quantum interference
It is known that Lorentz covariance fixes uniquely the current and the
associated guidance law in the trajectory interpretation of quantum mechanics
for spin particles. In the non-relativistic domain this implies a guidance law
for the electron which differs by an additional spin-dependent term from that
originally proposed by de Broglie and Bohm. In this paper we explore some of
the implications of the modified guidance law. We bring out a property of
mutual dependence in the particle coordinates that arises in product states,
and show that the quantum potential has scalar and vector components which
implies the particle is subject to a Lorentz-like force. The conditions for the
classical limit and the limit of negligible spin are given, and the empirical
sufficiency of the model is demonstrated. We then present a series of
calculations of the trajectories based on two-dimensional Gaussian wave packets
which illustrate how the additional spin-dependent term plays a significant
role in structuring both the individual trajectories and the ensemble. The
single packet corresponds to quantum inertial motion. The distinct features
encountered when the wavefunction is a product or a superposition are explored,
and the trajectories that model the two-slit experiment are given. The latter
paths exhibit several new characteristics compared with the original de
Broglie-Bohm ones, such as crossing of the axis of symmetry.Comment: 27 pages including 6 pages of figure
Entangled-state cryptographic protocol that remains secure even if nonlocal hidden variables exist and can be measured with arbitrary precision
Standard quantum cryptographic protocols are not secure if one assumes that
nonlocal hidden variables exist and can be measured with arbitrary precision.
The security can be restored if one of the communicating parties randomly
switches between two standard protocols.Comment: Shortened version, accepted in Phys. Rev.
Classical and quantum massive cosmology for the open FRW universe
In an open Friedmann-Robertson-Walker (FRW) space background, we study the
classical and quantum cosmological models in the framework of the recently
proposed nonlinear massive gravity theory. Although the constraints which are
present in this theory prevent it from admitting the flat and closed FRW models
as its cosmological solutions, for the open FRW universe, it is not the case.
We have shown that, either in the absence of matter or in the presence of a
perfect fluid, the classical field equations of such a theory adopt physical
solutions for the open FRW model, in which the mass term shows itself as a
cosmological constant. These classical solutions consist of two distinguishable
branches: One is a contacting universe which tends to a future singularity with
zero size, while another is an expanding universe having a past singularity
from which it begins its evolution. A classically forbidden region separates
these two branches from each other. We then employ the familiar canonical
quantization procedure in the given cosmological setting to find the
cosmological wave functions. We use the resulting wave function to investigate
the possibility of the avoidance of classical singularities due to quantum
effects. It is shown that the quantum expectation values of the scale factor,
although they have either contracting or expanding phases like their classical
counterparts, are not disconnected from each other. Indeed, the classically
forbidden region may be replaced by a bouncing period in which the scale factor
bounces from the contraction to its expansion eras. Using the Bohmian approach
of quantum mechanics, we also compute the Bohmian trajectory and the quantum
potential related to the system, which their analysis shows are the direct
effects of the mass term on the dynamics of the universe.Comment: 18 pages, 7 figures, typos corrected, refs. adde
Quantum Kinetic Theory III: Simulation of the Quantum Boltzmann Master Equation
We present results of simulations of a em quantum Boltzmann master equation
(QBME) describing the kinetics of a dilute Bose gas confined in a trapping
potential in the regime of Bose condensation. The QBME is the simplest version
of a quantum kinetic master equations derived in previous work. We consider two
cases of trapping potentials: a 3D square well potential with periodic boundary
conditions, and an isotropic harmonic oscillator. We discuss the stationary
solutions and relaxation to equilibrium. In particular, we calculate particle
distribution functions, fluctuations in the occupation numbers, the time
between collisions, and the mean occupation numbers of the one-particle states
in the regime of onset of Bose condensation.Comment: 12 pages, 15 figure
Investigating people: a qualitative analysis of the search behaviours of open-source intelligence analysts
The Internet and the World Wide Web have become integral parts of the lives of many modern individuals, enabling almost instantaneous communication, sharing and broadcasting of thoughts, feelings and opinions. Much of this information is publicly facing, and as such, it can be utilised in a multitude of online investigations, ranging from employee vetting and credit checking to counter-terrorism and fraud prevention/detection. However, the search needs and behaviours of these investigators are not well documented in the literature. In order to address this gap, an in-depth qualitative study was carried out in cooperation with a leading investigation company. The research contribution is an initial identification of Open-Source Intelligence investigator search behaviours, the procedures and practices that they undertake, along with an overview of the difficulties and challenges that they encounter as part of their domain. This lays the foundation for future research in to the varied domain of Open-Source Intelligence gathering
Spin-dependent Bohm trajectories associated with an electronic transition in hydrogen
The Bohm causal theory of quantum mechanics with spin-dependence is used to
determine electron trajectories when a hydrogen atom is subjected to
(semi-classical) radiation. The transition between the 1s ground state and the
2p0 state is examined. It is found that transitions can be identified along
Bohm trajectories. The trajectories lie on invariant hyperboloid surfaces of
revolution in R^3. The energy along the trajectories is also discussed in
relation to the hydrogen energy eigenvalues.Comment: 18 pages, 8 figure
A first experimental test of de Broglie-Bohm theory against standard quantum mechanics
De Broglie - Bohm (dBB) theory is a deterministic theory, built for
reproducing almost all Quantum Mechanics (QM) predictions, where position plays
the role of a hidden variable. It was recently shown that different coincidence
patterns are predicted by QM and dBB when a double slit experiment is realised
under specific conditions and, therefore, an experiment can test the two
theories. In this letter we present the first realisation of such a double slit
experiment by using correlated photons produced in type I Parametric Down
Conversion. Our results confirm QM contradicting dBB predictions
Geometrical view of quantum entanglement
Although a precise description of microscopic physical problems requires a
full quantum mechanical treatment, physical quantities are generally discussed
in terms of classical variables. One exception is quantum entanglement which
apparently has no classical counterpart. We demonstrate here how quantum
entanglement may be within the de Broglie-Bohm interpretation of quantum
mechanics visualized in geometrical terms, giving new insight into this
mysterious phenomenon and a language to describe it. On the basis of our
analysis of the dynamics of a pair of qubits, quantum entanglement is linked to
concurrent motion of angular momenta in the Bohmian space of hidden variables
and to the average angle between these momenta
- …